from numpy import *
import seaborn as sns
import pandas as pd
from sklearn.linear_model import *
from sklearn.pipeline import *
from sklearn.model_selection import train_test_split
from numpy import float64
from sklearn import *
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import ExtraTreeRegressor
from sklearn.externals import joblib
def create_model():
dict = {}
model_DecisionTreeRegressor = tree.DecisionTreeRegressor()
model_LinearRegression = linear_model.LinearRegression()
model_SVR = svm.SVR()
model_KNeighborsRegressor = neighbors.KNeighborsRegressor()
model_RandomForestRegressor = ensemble.RandomForestRegressor(n_estimators=20)
model_AdaBoostRegressor = ensemble.AdaBoostRegressor(n_estimators=50)
model_GradientBoostingRegressor = ensemble.GradientBoostingRegressor(n_estimators=100)
model_BaggingRegressor = BaggingRegressor()
model_ExtraTreeRegressor = ExtraTreeRegressor()
dict['DecisionTreeRegressor'] = model_DecisionTreeRegressor
dict['LinearRegression'] = model_LinearRegression
dict['SVR'] = model_SVR
dict['KNeighborsRegressor'] = model_KNeighborsRegressor
dict['RandomForestRegressor'] = model_RandomForestRegressor
dict['AdaBoostRegressor'] = model_AdaBoostRegressor
dict['GradientBoostingRegressor'] = model_GradientBoostingRegressor
dict['BaggingRegressor'] = model_BaggingRegressor
dict['ExtraTreeRegressor'] = model_ExtraTreeRegressor
return dict