sklearn回归

from numpy import *
import seaborn as sns
import pandas as pd
from sklearn.linear_model import *
from sklearn.pipeline import *
from sklearn.model_selection import train_test_split
from numpy import float64
from sklearn import *
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import ExtraTreeRegressor
from sklearn.externals import joblib


def create_model():
  dict = {} 
  model_DecisionTreeRegressor = tree.DecisionTreeRegressor()
  model_LinearRegression = linear_model.LinearRegression()
  model_SVR = svm.SVR()
  model_KNeighborsRegressor = neighbors.KNeighborsRegressor()
  model_RandomForestRegressor = ensemble.RandomForestRegressor(n_estimators=20)
  model_AdaBoostRegressor = ensemble.AdaBoostRegressor(n_estimators=50)
  model_GradientBoostingRegressor = ensemble.GradientBoostingRegressor(n_estimators=100)
  model_BaggingRegressor = BaggingRegressor()
  model_ExtraTreeRegressor = ExtraTreeRegressor()

  dict['DecisionTreeRegressor'] = model_DecisionTreeRegressor
  dict['LinearRegression'] = model_LinearRegression
  dict['SVR'] = model_SVR
  dict['KNeighborsRegressor'] = model_KNeighborsRegressor
  dict['RandomForestRegressor'] = model_RandomForestRegressor
  dict['AdaBoostRegressor'] = model_AdaBoostRegressor
  dict['GradientBoostingRegressor'] = model_GradientBoostingRegressor
  dict['BaggingRegressor'] = model_BaggingRegressor
  dict['ExtraTreeRegressor'] = model_ExtraTreeRegressor

  return dict

 

 

posted @ 2018-07-25 13:44  _陈昱先  阅读(155)  评论(0)    收藏  举报