【学习笔记】杜教筛

平均最小公倍数

n ≤ 1 0 9 n\leq 10^9 n109
∑ i = 1 n ∑ j = 1 i j ( i , j ) = ∑ i = 1 n ∑ d ∣ i ∑ j = 1 i j d [ ( i , j ) = d ] = ∑ i = 1 n ∑ d ∣ i ∑ j ′ = 1 i d j ′ [ ( i d , j ′ ) = 1 ] = ∑ i = 1 n ∑ d ∣ i ∑ j ′ = 1 d j ′ [ ( d , j ′ ) = 1 ] = ∑ i = 1 n ∑ d ∣ i ϕ ( d ) × d 2 = 1 2 ∑ i = 1 n ( ϕ ( i ) × i ) ⌊ n i ⌋ \sum_{i=1}^n\sum_{j=1}^i\frac{j}{(i,j)} \\ =\sum_{i=1}^n\sum_{d|i}\sum_{j=1}^i\frac{j}{d}[(i,j)=d] \\ =\sum_{i=1}^n\sum_{d|i}\sum_{j'=1}^{\frac{i}{d}}j'[(\frac{i}{d},j')=1] \\ =\sum_{i=1}^n\sum_{d|i}\sum_{j'=1}^dj'[(d,j')=1] \\ =\sum_{i=1}^n\sum_{d|i}\frac{\phi(d)\times d}{2} \\ =\frac{1}{2}\sum_{i=1}^n(\phi(i)\times i)\lfloor\frac{n}{i}\rfloor i=1nj=1i(i,j)j=i=1ndij=1idj[(i,j)=d]=i=1ndij=1dij[(di,j)=1]=i=1ndij=1dj[(d,j)=1]=i=1ndi2ϕ(d)×d=21i=1n(ϕ(i)×i)in

整除分块,对于 ∑ i = l r ( ϕ ( i ) × i ) \sum_{i=l}^r(\phi(i)\times i) i=lr(ϕ(i)×i) ,因为 l , r ≤ 1 0 9 l,r\leq 10^9 l,r109 ,所以需要杜教筛。

posted @ 2022-02-18 21:53  仰望星空的蚂蚁  阅读(8)  评论(0)    收藏  举报  来源