【题解】加权约数和
n
≤
1
0
6
n\leq 10^6
n≤106 。多组数据。
∑
i
=
1
n
∑
j
=
1
n
max
(
i
,
j
)
×
σ
(
i
j
)
\sum_{i=1}^n\sum_{j=1}^n\max(i,j)\times \sigma(ij) \\
i=1∑nj=1∑nmax(i,j)×σ(ij)
考虑这样一件事情。我们暴力枚举 i 。(233
i
×
∑
j
=
1
i
σ
(
i
j
)
=
i
×
∑
j
=
1
i
∑
x
∣
i
∑
y
∣
j
[
(
x
,
y
)
=
1
]
i
y
x
=
i
×
∑
j
=
1
i
∑
x
∣
i
∑
y
∣
j
[
(
i
x
,
y
)
=
1
]
x
y
=
i
×
∑
j
=
1
i
∑
x
∣
i
∑
y
∣
j
x
y
∑
k
∣
(
i
x
,
y
)
μ
(
k
)
=
i
×
∑
k
∣
i
μ
(
k
)
∑
x
∣
i
k
x
∑
y
=
1
i
k
y
k
[
i
y
k
]
=
i
×
∑
k
∣
i
μ
(
k
)
×
k
×
σ
(
i
k
)
×
∑
i
=
1
i
k
σ
(
i
)
i\times \sum_{j=1}^i\sigma(ij) \\ =i\times \sum_{j=1}^i\sum_{x|i}\sum_{y|j}[(x,y)=1]\frac{iy}{x} \\ =i\times \sum_{j=1}^i\sum_{x|i}\sum_{y|j}[(\frac{i}{x},y)=1]xy \\ =i\times \sum_{j=1}^i\sum_{x|i}\sum_{y|j}xy\sum_{k|(\frac{i}{x},y)}\mu(k) \\ =i\times \sum_{k|i}\mu(k)\sum_{x|\frac{i}{k}}x\sum_{y=1}^{\frac{i}{k}}yk[\frac{i}{yk}] \\ =i\times \sum_{k|i}\mu(k)\times k\times \sigma(\frac{i}{k})\times \sum_{i=1}^{\frac{i}{k}}\sigma(i)
i×j=1∑iσ(ij)=i×j=1∑ix∣i∑y∣j∑[(x,y)=1]xiy=i×j=1∑ix∣i∑y∣j∑[(xi,y)=1]xy=i×j=1∑ix∣i∑y∣j∑xyk∣(xi,y)∑μ(k)=i×k∣i∑μ(k)x∣ki∑xy=1∑kiyk[yki]=i×k∣i∑μ(k)×k×σ(ki)×i=1∑kiσ(i)
∑ i = 1 n i × ∑ j = 1 i σ ( i j ) = ∑ i = 1 n i × ∑ k ∣ i μ ( k ) × k × σ ( i k ) × F ( i k ) = ∑ i = 1 n σ ( i ) × F ( i ) × i × ∑ k = 1 [ n i ] μ ( k ) × k 2 \sum_{i=1}^ni\times \sum_{j=1}^i\sigma(ij) \\ =\sum_{i=1}^ni\times \sum_{k|i}\mu(k)\times k\times\sigma(\frac{i}{k})\times F(\frac{i}{k}) \\ =\sum_{i=1}^n\sigma(i)\times F(i)\times i\times\sum_{k=1}^{[\frac{n}{i}]}\mu(k)\times k^2 i=1∑ni×j=1∑iσ(ij)=i=1∑ni×k∣i∑μ(k)×k×σ(ki)×F(ki)=i=1∑nσ(i)×F(i)×i×k=1∑[in]μ(k)×k2
???
∑
i
=
1
n
i
×
σ
(
i
2
)
=
∑
i
=
1
n
i
×
∑
x
∣
i
∑
y
∣
i
x
y
∑
k
∣
(
i
x
,
y
)
μ
(
k
)
=
∑
i
=
1
n
i
×
∑
k
∣
i
μ
(
k
)
×
k
×
σ
(
i
k
)
2
=
∑
i
=
1
n
σ
(
i
)
2
×
i
×
∑
k
=
1
[
n
i
]
μ
(
k
)
×
k
2
\sum_{i=1}^ni\times \sigma(i^2) \\ =\sum_{i=1}^ni\times \sum_{x|i}\sum_{y|i}xy\sum_{k|(\frac{i}{x},y)}\mu(k) \\ =\sum_{i=1}^ni\times \sum_{k|i}\mu(k)\times k\times\sigma(\frac{i}{k})^2 \\ =\sum_{i=1}^n\sigma(i)^2\times i\times\sum_{k=1}^{[\frac{n}{i}]}\mu(k)\times k^2\\
i=1∑ni×σ(i2)=i=1∑ni×x∣i∑y∣i∑xyk∣(xi,y)∑μ(k)=i=1∑ni×k∣i∑μ(k)×k×σ(ki)2=i=1∑nσ(i)2×i×k=1∑[in]μ(k)×k2
however …
O ( T n ) O(T\sqrt{n}) O(Tn) 过不去。
差分一下就好。

浙公网安备 33010602011771号