【题解】加权约数和

n ≤ 1 0 6 n\leq 10^6 n106 。多组数据。
∑ i = 1 n ∑ j = 1 n max ⁡ ( i , j ) × σ ( i j ) \sum_{i=1}^n\sum_{j=1}^n\max(i,j)\times \sigma(ij) \\ i=1nj=1nmax(i,j)×σ(ij)
考虑这样一件事情。我们暴力枚举 i 。(233
i × ∑ j = 1 i σ ( i j ) = i × ∑ j = 1 i ∑ x ∣ i ∑ y ∣ j [ ( x , y ) = 1 ] i y x = i × ∑ j = 1 i ∑ x ∣ i ∑ y ∣ j [ ( i x , y ) = 1 ] x y = i × ∑ j = 1 i ∑ x ∣ i ∑ y ∣ j x y ∑ k ∣ ( i x , y ) μ ( k ) = i × ∑ k ∣ i μ ( k ) ∑ x ∣ i k x ∑ y = 1 i k y k [ i y k ] = i × ∑ k ∣ i μ ( k ) × k × σ ( i k ) × ∑ i = 1 i k σ ( i ) i\times \sum_{j=1}^i\sigma(ij) \\ =i\times \sum_{j=1}^i\sum_{x|i}\sum_{y|j}[(x,y)=1]\frac{iy}{x} \\ =i\times \sum_{j=1}^i\sum_{x|i}\sum_{y|j}[(\frac{i}{x},y)=1]xy \\ =i\times \sum_{j=1}^i\sum_{x|i}\sum_{y|j}xy\sum_{k|(\frac{i}{x},y)}\mu(k) \\ =i\times \sum_{k|i}\mu(k)\sum_{x|\frac{i}{k}}x\sum_{y=1}^{\frac{i}{k}}yk[\frac{i}{yk}] \\ =i\times \sum_{k|i}\mu(k)\times k\times \sigma(\frac{i}{k})\times \sum_{i=1}^{\frac{i}{k}}\sigma(i) i×j=1iσ(ij)=i×j=1ixiyj[(x,y)=1]xiy=i×j=1ixiyj[(xi,y)=1]xy=i×j=1ixiyjxyk(xi,y)μ(k)=i×kiμ(k)xkixy=1kiyk[yki]=i×kiμ(k)×k×σ(ki)×i=1kiσ(i)

∑ i = 1 n i × ∑ j = 1 i σ ( i j ) = ∑ i = 1 n i × ∑ k ∣ i μ ( k ) × k × σ ( i k ) × F ( i k ) = ∑ i = 1 n σ ( i ) × F ( i ) × i × ∑ k = 1 [ n i ] μ ( k ) × k 2 \sum_{i=1}^ni\times \sum_{j=1}^i\sigma(ij) \\ =\sum_{i=1}^ni\times \sum_{k|i}\mu(k)\times k\times\sigma(\frac{i}{k})\times F(\frac{i}{k}) \\ =\sum_{i=1}^n\sigma(i)\times F(i)\times i\times\sum_{k=1}^{[\frac{n}{i}]}\mu(k)\times k^2 i=1ni×j=1iσ(ij)=i=1ni×kiμ(k)×k×σ(ki)×F(ki)=i=1nσ(i)×F(i)×i×k=1[in]μ(k)×k2

???
∑ i = 1 n i × σ ( i 2 ) = ∑ i = 1 n i × ∑ x ∣ i ∑ y ∣ i x y ∑ k ∣ ( i x , y ) μ ( k ) = ∑ i = 1 n i × ∑ k ∣ i μ ( k ) × k × σ ( i k ) 2 = ∑ i = 1 n σ ( i ) 2 × i × ∑ k = 1 [ n i ] μ ( k ) × k 2 \sum_{i=1}^ni\times \sigma(i^2) \\ =\sum_{i=1}^ni\times \sum_{x|i}\sum_{y|i}xy\sum_{k|(\frac{i}{x},y)}\mu(k) \\ =\sum_{i=1}^ni\times \sum_{k|i}\mu(k)\times k\times\sigma(\frac{i}{k})^2 \\ =\sum_{i=1}^n\sigma(i)^2\times i\times\sum_{k=1}^{[\frac{n}{i}]}\mu(k)\times k^2\\ i=1ni×σ(i2)=i=1ni×xiyixyk(xi,y)μ(k)=i=1ni×kiμ(k)×k×σ(ki)2=i=1nσ(i)2×i×k=1[in]μ(k)×k2
however …

O ( T n ) O(T\sqrt{n}) O(Tn ) 过不去。

差分一下就好。

posted @ 2022-02-22 15:42  仰望星空的蚂蚁  阅读(9)  评论(0)    收藏  举报  来源