递推

递推
一.简介:
递推是按照一定的规律来计算序列中的每个项,通常是通过计算前面的一些项来得出序列中的指定项的值;
其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复;
该算法利用了计算机速度快和不知疲倦的机器特点。
二.知识框架:
无(具体见题目中);
三.入门题目:
题目描述
有2 * n的一个长方形方格道路,只有一种1 * 2的砖去铺,总共有多少种铺法呢?
输入格式
一行,一个n(0≤n≤45)
输出格式
一行,一个数(总共有多少种铺法)
样例

样例输入
3
样例输出
3
数据范围与提示
必须用递推,若没有道路,铺法可视为1种:

思路:
此题考虑临界的两种情况:
(1)
最后一块砖横着铺:

此情况考虑到第n-2格。
(2)
最后一块砖竖着铺:

此情况考虑到第n-1格。
把两种情况的可能数相加,得递归式:
a[i] = a[i - 1] + a[i - 2]。
代码:

#include <cstdio>
#include <cmath>
int n, a[25];
int main() {
	a[0] = 1;
	a[1] = 2;
	scanf("%d", &n);
	if (n == 0) {
		printf("1");
		return 0;
	}
	for (int i = 2; i < n; i++) {
		a[i] = a[i - 1] + a[i - 2];
	}
	printf("%d", a[n - 1]);
	return 0;
} 

四.五大经典题型:
1.Fibonacci数列
在所有的递推关系中,Fibonacci数列应该是最为大家所熟悉的。在最基础的程序设计语言Logo语言中,就有很多这类的题目。而在较为复杂的Basic、Pascal、C语言中,Fibonacci数列类的题目因为解法相对容易一些,逐渐退出了竞赛的舞台。可是这不等于说Fibonacci数列没有研究价值,恰恰相反,一些此类的题目还是能给我们一定的启发的。
Fibonacci数列的代表问题是由意大利著名数学家Fibonacci于1202年提出的“兔子繁殖问题”(又称“Fibonacci问题”)。
问题的提出:有雌雄一对兔子,假定过两个月便可繁殖雌雄各一的一对小兔子。问过n个月后共有多少对兔子?
解:设满x个月共有兔子Fx对,其中当月新生的兔子数目为Nx对。第x-1个月留下的兔子数目设为Fx-1对。则:
      Fx=Nx+ Fx-1
      Nx=F(x-2 )        (即第x-2个月的所有兔子到第x个月都有繁殖能力了)
 ∴   Fx=F(x-1)+F(x-2 )    边界条件:F0=0,F1=1
由上面的递推关系可依次得到
F2=F1+F0=1,F3=F2+F1=2,F4=F3+F2=3,F5=F4+F3=5,……。
Fabonacci数列常出现在比较简单的组合计数问题中,例如以前的竞赛中出现的“骨牌覆盖”问题。在优选法中,Fibonacci数列的用处也得到了较好的体现。
2.Hanoi塔问题
问题的提出:Hanoi塔由n个大小不同的圆盘和三根木柱a,b,c组成。开始时,这n个圆盘由大到小依次套在a柱上,如图3-11所示。 要求把a柱上n个圆盘按下述规则移到c柱上:

(1)一次只能移一个圆盘;
(2)圆盘只能在三个柱上存放;
(3)在移动过程中,不允许大盘压小盘。
问将这n个盘子从a柱移动到c柱上,总计需要移动多少个盘次?
解:设hn为n个盘子从a柱移到c柱所需移动的盘次。显然,当n=1时,只需把a 柱上的盘子直接移动到c柱就可以了,故h1=1。当n=2时,先将a柱上面的小盘子移动到b柱上去;然后将大盘子从a柱移到c 柱;最后,将b柱上的小盘子移到c柱上,共记3个盘次,故h2=3。以此类推,当a柱上有n(n>2)个盘子时,总是先借助c柱把上面的n-1个盘子移动到b柱上,然后把a柱最下面的盘子移动到c柱上;再借助a柱把b柱上的n-1个盘子移动到c柱上;总共移动h(n-1)+1+h(n-1)个盘次。
 ∴hn=2h(n-1)+1    边界条件:h1=1
3.平面分割问题
问题的提出:设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。
解:设an为n条封闭曲线把平面分割成的区域个数。 由图3-13可以看出:a2-a1=2;a3-a2=4;a4-a3=6。

从这些式子中可以看出an-a(n-1)=2(n-1)。当然,上面的式子只是我们通过观察4幅图后得出的结论,它的正确性尚不能保证。下面不妨让我们来试着证明一下。当平面上已有n-1条曲线将平面分割成a(n-1)个区域后,第n-1条曲线每与曲线相交一次,就会增加一个区域,因为平面上已有了n-1条封闭曲线,且第n条曲线与已有的每一条闭曲线恰好相交于两点,且不会与任两条曲线交于同一点,故平面上一共增加2(n-1)个区域,加上已有的a(n-1)个区域,一共有a(n-1)+2(n-1)个区域。所以本题的递推关系是an=a(n-1)+2(n-1),边界条件是a0=1。
4.Catalan数(卡塔兰数)
Catalan数首先是由Euler在精确计算对凸n边形的不同的对角三角形剖分的个数问题时得到的,它经常出现在组合计数问题中。
问题的提出:在一个凸n边形中,通过不相交于n边形内部的对角线,把n边形拆分成若干三角形,不同的拆分数目用hn表示,hn即为Catalan数。例如五边形有如下五种拆分方案(图3-14),故h5=5。求对于一个任意的凸n边形相应的hn。


Catalan数是比较复杂的递推关系,尤其在竞赛的时候,选手很难在较短的时间里建立起正确的递推关系。当然,Catalan数类的问题也可以用搜索的方法来完成,但是,搜索的方法与利用递推关系的方法比较起来,不仅效率低,编程复杂度也陡然提高。
5.第二类Stirling数(斯特林数)
在五类典型的递推关系中,第二类Stirling是最不为大家所熟悉的。也正因为如此,我们有必要先解释一下什么是第二类Strling数。
【定义2】n个有区别的球放到m个相同的盒子中,要求无一空盒,其不同的方案数用S(n,m)表示,称为第二类Stirling数。
下面就让我们根据定义来推导带两个参数的递推关系——第二类Stirling数。
 解:设有n个不同的球,分别用b1,b2,……bn表示。从中取出一个球bn,bn的放法有以下两种:
①bn独自占一个盒子;那么剩下的球只能放在m-1个盒子中,方案数为S2(n-1,m-1);
②bn与别的球共占一个盒子;那么可以事先将b1,b2,……bn-1这n-1个球放入m个盒子中,然后再将球bn可以放入其中一个盒子中,方案数为mS2(n-1,m)。
       综合以上两种情况,可以得出第二类Stirling数定理:
【定理】S2(n,m)=mS2(n-1,m)+S2(n-1,m-1)   (n>1,m1)      边界条件可以由定义2推导出:
S2(n,0)=0;S2(n,1)=1;S2(n,n)=1;S2(n,k)=0(k>n)。
第二类Stirling数在竞赛中较少出现,但在竞赛中也有一些题目与其类似,甚至更为复杂。

posted @ 2021-03-13 15:05  cqbz  阅读(111)  评论(0编辑  收藏  举报