摘要:
本文介绍了一款基于YOLO算法的车型识别系统,支持轿车、卡车、公共汽车和摩托车等多种车型识别。系统具备图片、视频、摄像头实时检测及批量处理功能,集成语音播报、结果导出等实用模块,并提供用户登录和模型训练功能。技术栈采用Python 3.10、PyQt5和SQLite,支持YOLOv5至v12多模型切换。测试数据显示,YOLO12n模型以40.6%的mAP表现最优,YOLO11n在CPU推理速度最快(56.1ms)。系统训练数据集包含19,000张图片,mAP@0.5达到70.8%,F1值为0.67,识别效果良好。完整源码可通过指定视频链接获取。 阅读全文
本文介绍了一款基于YOLO算法的车型识别系统,支持轿车、卡车、公共汽车和摩托车等多种车型识别。系统具备图片、视频、摄像头实时检测及批量处理功能,集成语音播报、结果导出等实用模块,并提供用户登录和模型训练功能。技术栈采用Python 3.10、PyQt5和SQLite,支持YOLOv5至v12多模型切换。测试数据显示,YOLO12n模型以40.6%的mAP表现最优,YOLO11n在CPU推理速度最快(56.1ms)。系统训练数据集包含19,000张图片,mAP@0.5达到70.8%,F1值为0.67,识别效果良好。完整源码可通过指定视频链接获取。 阅读全文
posted @ 2026-01-06 21:44
Coding茶水间
阅读(24)
评论(0)
推荐(0)

浙公网安备 33010602011771号