常见概率分布及其数学期望和方差

以下是常见概率分布及其期望和方差公式的表格:

分布名称 分布列或概率密度 期望 方差
离散型分布
0-1分布(两点分布或伯努利分布)\(B(1, p)\) \(p_{k}=p^{k}(1-p)^{1-k},k = 0,1\) \(p\) \(p(1-p)\)
二项分布\(B(n,p)\) \(p_{k}=\binom{n}{k}p^{k}(1-p)^{n-k},k = 0,1,\cdots,n\) \(np\) \(np(1-p)\)
泊松分布\(P(\lambda)\) \(p_{k}=\frac{\lambda^{k}}{k!}e^{-\lambda},k = 0,1,\cdots\) \(\lambda\) \(\lambda\)
[[超几何分布]]\(H(n,N,M)\) \(p_{k}=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}},k = 0,1,\cdots,r,r=\min{(M,n)}\) \(\frac{nM}{N}\) \(\frac{nM(N-M)(N-n)}{N^{2}(N-1)}\)
[[几何分布]]\(Ge(p)\) \(p_{k}=(1-p)^{k-1}p,k = 1,2,\cdots\) \(\frac{1}{p}\) \(\frac{1-p}{p^{2}}\)
负二项分布\(Nb(r,p)\) \(p_{k}=\binom{k-1}{r-1}(1-p)^{k-r}p^{r},k = r,r + 1,\cdots\) \(\frac{r}{p}\) \(\frac{r(1-p)}{p^{2}}\)
连续型分布
均匀分布\(U(a,b)\) \(f(x)=\frac{1}{b-a},a<x<b\) \(\frac{a + b}{2}\) \(\frac{(b-a)^{2}}{12}\)
正态分布\(N(\mu,\sigma^{2})\) \(f(x)=\frac{1}{\sqrt{2\pi}\sigma}\exp\left\{-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right\},-\infty<x<+\infty\) \(\mu\) \(\sigma^{2}\)
指数分布\(Exp(\lambda)\) \(f(x)=\lambda e^{-\lambda x},x>0\) \(\frac{1}{\lambda}\) \(\frac{1}{\lambda^{2}}\)
伽马分布\(\Gamma(\alpha,\lambda)\) \(f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x},x>0\) \(\frac{\alpha}{\lambda}\) \(\frac{\alpha}{\lambda^{2}}\)
卡方分布\(\chi^{2}(n)\) \(f(x)=\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}},x>0\) \(n\) \((2n)\)
t分布\(t(n)\) \(f(x)=\frac{\Gamma(\frac{n + 1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})}(1+\frac{x^{2}}{n})^{-\frac{n + 1}{2}}\) \(0(n>1时)\) \(\frac{n}{n - 2}(n>2时)\)
F分布\(F(m,n)\) \(f(x)=\frac{\Gamma(\frac{m + n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})}(\frac{m}{n})^{\frac{m}{2}}x^{\frac{m}{2}-1}(1+\frac{mx}{n})^{-\frac{m + n}{2}},x>0\) \(\frac{n}{n - 2}(n>2时)\) \(\frac{2n^{2}(m + n - 2)}{m(n - 2)^{2}(n - 4)}(n>4时)\)
posted @ 2025-01-04 21:58  codersgl  阅读(1054)  评论(0)    收藏  举报