import numpy as np
def sigmod(x):
return 1 / (1 + np.exp(-x))
def deriv_sigmod(x):
fx = sigmod(x)
return fx * (1 - fx)
def mse_loss(y_true, y_pred):
return ((y_true - y_pred)**2).mean()
class OurNeuralNetwork:
def __init__(self):
#weights
self.w1 = np.random.normal()
self.w2 = np.random.normal()
self.w3 = np.random.normal()
self.w4 = np.random.normal()
self.w5 = np.random.normal()
self.w6 = np.random.normal()
#biases
self.b1 = np.random.normal()
self.b2 = np.random.normal()
self.b3 = np.random.normal()
def feedforward(self,x):
#x 是一个有两个元素的numpy数组
h1 = sigmod(self.w1 * x[0] + self.w2 * x[1] + self.b1)
h2 = sigmod(self.w3 * x[0] + self.w4 * x[1] + self.b2)
o1 = sigmod(self.w5 * h1 + self.w6 * h2 + self.b3)
return o1
def train(self, data, all_y_trues):
learn_rate = 0.1
epoches = 1000
for epoch in range(epoches):
for x, y_true in zip(data, all_y_trues):
sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
h1 = sigmod(sum_h1)
sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
h2 = sigmod(sum_h2)
sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
o1 = sigmod(sum_o1)
y_pred = o1
#开始计算偏导数
#命名规则 d_L_d_w1 代表 L对w1的偏导数
d_L_d_ypred = -2 * (y_true - y_pred)
#Neuron o1
d_ypred_d_w5 = h1 * deriv_sigmod(sum_o1)
d_ypred_d_w6 = h2 * deriv_sigmod(sum_o1)
d_ypred_d_b3 = deriv_sigmod(sum_o1)
d_ypred_d_h1 = self.w5 * deriv_sigmod(sum_o1)
d_ypred_d_h2 = self.w6 * deriv_sigmod(sum_o1)
#Neuron h1
d_h1_d_w1 = x[0] * deriv_sigmod(sum_h1)
d_h1_d_w2 = x[1] * deriv_sigmod(sum_h1)
d_h1_d_b1 = deriv_sigmod(sum_h1)
#Neuron h2
d_h2_d_w3 = x[0] * deriv_sigmod(sum_h2)
d_h2_d_w4 = x[1] * deriv_sigmod(sum_h2)
d_h2_d_b2 = deriv_sigmod(sum_h2)
#---------更新权重和偏置
#Neuron h1
self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1
#Neuron h2
self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3
self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4
self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2
#Neuron o1
self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5
self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6
self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3
#每个epoch结束以后计算总的损失
if epoch % 10 == 0:
y_preds = np.apply_along_axis(self.feedforward, 1, data)
print (y_preds)
loss = mse_loss(all_y_trues, y_preds)
print ("Epoch %d loss: %.3f" % (epoch, loss))
data = np.array([
[-2, -1],
[25, 6],
[17, 4],
[-15, -6]
])
all_y_trues = np.array([1, 0, 0, 1]
)
#训练神经网络
network = OurNeuralNetwork()
network.train(data, all_y_trues)
emily = np.array([-7, -3])
frank = np.array([20, 2])
print ("Emily: %.3f" % network.feedforward(emily))
print ("Frank: %.3f" % network.feedforward(frank))