P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路
题意
有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点。
思路
(一)
首先先缩点。自己在缩点再建图中犯了错误,少连接了大点到其他点的边。
跑两次最长路,一次以1为起点,一次以1为终点(跑一遍反图)
然后枚举边,判断可否形成一个环。
(二)
分层图的思想
以为只有一次逆向的机会,可以建两层图,第一层向第二层连翻转的情况。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l, mid, rt << 1) #define rson (mid + 1, r, rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef pair<int, pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define boost \ ios::sync_with_stdio(false); \ cin.tie(0) #define rep(a, b, c) for (int a = (b); a <= (c); ++a) #define max3(a, b, c) max(max(a, b), c); #define min3(a, b, c) min(min(a, b), c); const ll oo = 1ll << 17; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9 + 7; const double esp = 1e-8; const double PI = acos(-1.0); const double PHI = 0.61803399; //黄金分割点 const double tPHI = 0.38196601; template <typename T> inline T read(T &x) { x = 0; int f = 0; char ch = getchar(); while (ch < '0' || ch > '9') f |= (ch == '-'), ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x = f ? -x : x; } inline void cmax(int &x, int y) { if (x < y) x = y; } inline void cmax(ll &x, ll y) { if (x < y) x = y; } inline void cmin(int &x, int y) { if (x > y) x = y; } inline void cmin(ll &x, ll y) { if (x > y) x = y; } /*-----------------------showtime----------------------*/ const int maxn = 1e5 + 9; vector<int> mp1[maxn], mp2[2][maxn]; int dfn[maxn], low[maxn], vis[maxn], gtot, nn, dp[maxn]; int col[maxn], vv[maxn]; stack<int> st; void tarjan(int u) { dfn[u] = low[u] = ++gtot; st.push(u); vis[u] = 1; for (int i = 0; i < mp1[u].size(); i++) { int v = mp1[u][i]; if (dfn[v] == 0) { tarjan(v); low[u] = min(low[u], low[v]); } else if (vis[v]) { low[u] = min(low[u], dfn[v]); } } if (low[u] == dfn[u]) { int x; nn++; while (!st.empty()) { int x = st.top(); st.pop(); col[x] = nn; vis[x] = 0; dp[nn]++; if (x == u) break; } } } int ans = 0; int dis[maxn][2]; pii edge[maxn]; void dji(int s, int id) { priority_queue<pii> que; dis[s][id] = dp[s]; que.push(pii(dis[s][id], s)); while (!que.empty()) { int u = que.top().se; que.pop(); for (int i = 0; i < mp2[id][u].size(); i++) { int v = mp2[id][u][i], w = dp[v]; if (dis[v][id] < dis[u][id] + w) { dis[v][id] = dis[u][id] + w; que.push(pii(dis[v][id], v)); } } } } int main() { int n, m; scanf("%d%d", &n, &m); rep(i, 1, m) { int x, y; scanf("%d%d", &x, &y); mp1[x].pb(y); edge[i] = pii(x, y); } for (int i = 1; i <= n; i++) if (!dfn[i]) tarjan(i); int s = col[1]; int pp = 0; memset(vis, 0, sizeof(vis)); for (int i = 1; i <= n; i++) { int u = col[i]; if (u == 0) continue; for (int j = 0; j < mp1[i].size(); j++) { int v = col[mp1[i][j]]; if (v == 0 || u == v) continue; mp2[0][u].pb(v); mp2[1][v].pb(u); } } dji(s, 0); dji(s, 1); int ans = dp[s]; for (int i = 1; i <= m; i++) { int u = col[edge[i].fi], v = col[edge[i].se]; if (dis[v][0] && dis[u][1]) ans = max(ans, dis[v][0] + dis[u][1] - dp[s]); } printf("%d\n", ans); return 0; }
skr