有标号的DAG计数系列问题

传送门

II

\(f_i\) 表示 \(i\) 个点的答案
那么枚举至少 \(j\) 个点的出度为 \(0\)

\[\sum_{j=0}^{i}(-1)^j\binom{i}{j}f_{i-j}2^{(i-j)j}=0 \]

所以

\[f_i=\sum_{j=1}^{i}(-1)^{j+1}\binom{i}{j}f_{i-j}2^{(i-j)j} \]

\[\frac{f_i}{i!}=\sum_{j=0}^{i-1}\frac{f_j}{j!}\frac{(-1)^{i-j+1}}{(i-j)!}2^{(i-j)j} \]

现在的难处在于 \(2^{(i-j)j}\) 的拆分
可以发现

\[2^{(i-j)j}=\frac{2^{\frac{i^2}{2}}}{2^{\frac{(i-j)^2}{2}}2^{\frac{j^2}{2}}} \]

所以

\[\frac{f_i}{i!\sqrt{2}^{i^2}}=\sum_{j=0}^{i-1}\frac{f_j}{j!\sqrt{2}^{j^2}}\frac{(-1)^{i-j+1}}{(i-j)!\sqrt{2}^{(i-j)^2}} \]

求出 \(2\) 在模 \(998244353\) 意义下的二次剩余然后多项式求逆即可
二次剩余没有学QwQ直接暴力预处理出来即可

# include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn(4e5 + 5);
const int mod(998244353);
const int res2(116195171);
const int invres2(557219762);

inline void Inc(int &x, int y) {
	if ((x += y) >= mod) x -= mod;
}

inline int Pow(ll x, int y) {
	register ll ret = 1;
	for (; y; y >>= 1, x = x * x % mod)
		if (y & 1) ret = ret * x % mod;
	return ret;
}

int a[maxn], b[maxn], w[2][maxn], deg, r[maxn], l;

inline void Init(int n) {
    register int i, k, wn, iwn;
    for (deg = 1, l = 0; deg < n; deg <<= 1) ++l;
    for (i = 0; i < deg; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    for (i = 1; i < deg; i <<= 1) {
        w[0][0] = w[1][0] = 1;
        wn = Pow(3, (mod - 1) / (i << 1)), iwn = Pow(wn, mod - 2);
        for (k = 1; k < i; ++k) {
            w[0][deg / i * k] = 1LL * w[0][deg / i * (k - 1)] * wn % mod;
            w[1][deg / i * k] = 1LL * w[1][deg / i * (k - 1)] * iwn % mod;
        }
    }
}

inline void NTT(int *p, int opt) {
    register int i, j, k, t, wn, x, y;
    for (i = 0; i < deg; ++i) if (r[i] < i) swap(p[r[i]], p[i]);
    for (i = 1; i < deg; i <<= 1)
        for(t = i << 1, j = 0; j < deg; j += t)
            for (k = 0; k < i; ++k) {
                wn = w[opt == -1][deg / i * k];
                x = p[j + k], y = 1LL * wn * p[i + j + k] % mod;
                p[j + k] = x + y, p[i + j + k] = x - y;
                if (p[j + k] >= mod) p[j + k] -= mod;
                if (p[i + j + k] < 0) p[i + j + k] += mod;
            }
    if (opt == -1) {
        wn = Pow(deg, mod - 2);
        for (i = 0; i < deg; ++i) p[i] = 1LL * p[i] * wn % mod;
    }
}

int n, f[maxn], g[maxn], fac[maxn], ifac[maxn];

void Inv(int *p, int *q, int len) {
    if (len == 1) {
        q[0] = Pow(p[0], mod - 2);
        return;
    }
    Inv(p, q, len >> 1);
    register int i, tmp = len << 1;
    for (i = 0; i < len; ++i) a[i] = p[i], b[i] = q[i];
    Init(tmp), NTT(a, 1), NTT(b, 1);
    for (i = 0; i < tmp; ++i) a[i] = 1LL * a[i] * b[i] % mod * b[i] % mod;
    NTT(a, -1);
    for (i = 0; i < len; ++i) q[i] = (2LL * q[i] + mod - a[i]) % mod;
    for (i = 0; i < tmp; ++i) a[i] = b[i] = 0;
}

int main() {
	register int i, len;
	scanf("%d", &n), f[0] = fac[0] = ifac[0] = ifac[1] = 1;
	for (i = 2; i <= n; ++i) ifac[i] = 1LL * (mod - mod / i) * ifac[mod % i] % mod;
	for (i = 1; i <= n; ++i) fac[i] = 1LL * fac[i - 1] * i % mod, ifac[i] = 1LL * ifac[i - 1] * ifac[i] % mod;
	for (i = 0; i <= n; ++i) {
		f[i] = 1LL * ifac[i] * Pow(invres2, 1LL * i * i % (mod - 1)) % mod;
		if (i & 1) f[i] = mod - f[i];
	}
	for (len = 1; len <= n; len <<= 1);
	Inv(f, g, len);
	printf("%lld\n", 1LL * fac[n] * Pow(res2, 1LL * n * n % (mod - 1)) % mod * g[n] % mod);
	return 0;
}

IV

\(f_i\) 表示不要求连通的 \(i\) 个点 的 \(DAG\) 的方案数
直接 \(II\) 那样求出来
\(g_i\) 表示 \(i\) 个点的答案

方法一

钦定第一个连通块的一个点

\[g_i=f_i-\sum_{j=1}^{i-1}g_jf_{i-j}\binom{i-1}{j-1} \]

组合数拆整理得到

\[\frac{f_i}{(i-1)!}=\sum_{j=1}^{i}\frac{g_j}{(i-1)!}\frac{f_{i-j}}{(i-j)!} \]

直接多项式求逆后卷起来就好了

方法二

\[F(x)=\sum_{i=0}^{\infty}f_i\frac{x^i}{i!} \]

\[G(x)=\sum_{i=0}^{\infty}g_i\frac{x^i}{i!} \]

那么

\[F(x)=e^{G(x)},G(x)=ln F(x) \]

方法一

# include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn(4e5 + 5);
const int mod(998244353);
const int res2(116195171);
const int invres2(557219762);

inline void Inc(int &x, int y) {
	if ((x += y) >= mod) x -= mod;
}

inline int Pow(ll x, int y) {
	register ll ret = 1;
	for (; y; y >>= 1, x = x * x % mod)
		if (y & 1) ret = ret * x % mod;
	return ret;
}

int a[maxn], b[maxn], w[2][maxn], deg, r[maxn], l;

inline void Init(int n) {
    register int i, k, wn, iwn;
    for (deg = 1, l = 0; deg < n; deg <<= 1) ++l;
    for (i = 0; i < deg; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    for (i = 1; i < deg; i <<= 1) {
        w[0][0] = w[1][0] = 1;
        wn = Pow(3, (mod - 1) / (i << 1)), iwn = Pow(wn, mod - 2);
        for (k = 1; k < i; ++k) {
            w[0][deg / i * k] = 1LL * w[0][deg / i * (k - 1)] * wn % mod;
            w[1][deg / i * k] = 1LL * w[1][deg / i * (k - 1)] * iwn % mod;
        }
    }
}

inline void NTT(int *p, int opt) {
    register int i, j, k, t, wn, x, y;
    for (i = 0; i < deg; ++i) if (r[i] < i) swap(p[r[i]], p[i]);
    for (i = 1; i < deg; i <<= 1)
        for(t = i << 1, j = 0; j < deg; j += t)
            for (k = 0; k < i; ++k) {
                wn = w[opt == -1][deg / i * k];
                x = p[j + k], y = 1LL * wn * p[i + j + k] % mod;
                p[j + k] = x + y, p[i + j + k] = x - y;
                if (p[j + k] >= mod) p[j + k] -= mod;
                if (p[i + j + k] < 0) p[i + j + k] += mod;
            }
    if (opt == -1) {
        wn = Pow(deg, mod - 2);
        for (i = 0; i < deg; ++i) p[i] = 1LL * p[i] * wn % mod;
    }
}

int n, f[maxn], g[maxn], h[maxn], fac[maxn], ifac[maxn];

void Inv(int *p, int *q, int len) {
    if (len == 1) {
        q[0] = Pow(p[0], mod - 2);
        return;
    }
    Inv(p, q, len >> 1);
    register int i, tmp = len << 1;
    for (i = 0; i < len; ++i) a[i] = p[i], b[i] = q[i];
    Init(tmp), NTT(a, 1), NTT(b, 1);
    for (i = 0; i < tmp; ++i) a[i] = 1LL * a[i] * b[i] % mod * b[i] % mod;
    NTT(a, -1);
    for (i = 0; i < len; ++i) q[i] = (2LL * q[i] + mod - a[i]) % mod;
    for (i = 0; i < tmp; ++i) a[i] = b[i] = 0;
}

int main() {
	register int i, len;
	scanf("%d", &n), f[0] = fac[0] = ifac[0] = ifac[1] = 1;
	for (i = 2; i <= n; ++i) ifac[i] = 1LL * (mod - mod / i) * ifac[mod % i] % mod;
	for (i = 1; i <= n; ++i) fac[i] = 1LL * fac[i - 1] * i % mod, ifac[i] = 1LL * ifac[i - 1] * ifac[i] % mod;
	for (i = 0; i <= n; ++i) {
		f[i] = 1LL * ifac[i] * Pow(invres2, 1LL * i * i % (mod - 1)) % mod;
		if (i & 1) f[i] = mod - f[i];
	}
	for (len = 1; len <= n; len <<= 1);
	Inv(f, g, len);
	for (i = 0; i <= n; ++i) g[i] = 1LL * g[i] * Pow(res2, 1LL * i * i % (mod - 1)) % mod;
	for (memset(f, 0, sizeof(f)), i = n + 1; i < len; ++i) g[i] = 0;
	for (i = 1; i <= n; ++i) f[i] = 1LL * g[i] * i % mod;
	Inv(g, h, len), len <<= 1;
    for (i = 0; i < len; ++i) a[i] = f[i], b[i] = h[i];
    Init(len), NTT(a, 1), NTT(b, 1);
    for (i = 0; i < len; ++i) a[i] = 1LL * a[i] * b[i] % mod;
    NTT(a, -1);
	printf("%lld\n", 1LL * a[n] * fac[n - 1] % mod);
	return 0;
}
posted @ 2018-12-06 17:50  Cyhlnj  阅读(285)  评论(0编辑  收藏  举报