洛谷__P1121 环状最大两段子段和
题目链接:P1121 环状最大两段子段和 - 洛谷
题目大意:
给出一段长度为 的环状序列 ,即认为 和 是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大。
思路:
观察题目,发现不管怎么选,都只有两种情况:
1. ----++++---++++---
2. ++---+++++--++++
对于第一种,我们可以看成是线性的最大双子段和
对于第二种,我们可以看成是 总和 - 线性的最小双子段和
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<queue>
#include<deque>
#include<stack>
#include<set>
#include<map>
#include<unordered_set>
#include<unordered_map>
#include<bitset>
#include<tuple>
#define inf 72340172838076673
#define int long long
#define endl '\n'
#define F first
#define S second
#define mst(a,x) memset(a,x,sizeof (a))
using namespace std;
typedef pair<int, int> pii;
const int N = 200086, mod = 998244353;
int n, s = 0;
int a[N], pre[N], suf[N];
int ask() {
int res = -inf;
for (int i = 1; i <= n; i++) pre[i] = max(pre[i - 1], 0ll) + a[i];
for (int i = 1; i <= n; i++) pre[i] = max(pre[i], pre[i - 1]);
for (int i = n; i >= 1; i--) suf[i] = max(suf[i + 1], 0ll) + a[i];
for (int i = n; i >= 1; i--) suf[i] = max(suf[i], suf[i + 1]);
for (int i = 1; i < n; i++) res = max(res, pre[i] + suf[i + 1]);
return res;
}
void solve() {
cin >> n;
mst(pre, ~1), mst(suf, ~1);
for (int i = 1; i <= n; i++) {
cin >> a[i];
s += a[i];
}
int res = ask();
for (int i = 1; i <= n; i++) a[i] *= -1;
int tp = s + ask() ;
res = max(res, tp ? tp : -inf);
cout << res << endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int T = 1;
// cin >> T;
while (T--) solve();
return 0;
}

浙公网安备 33010602011771号