2018年10月8日

摘要: 恢复内容开始 出发点 应用统计方法解决模式识别问题时,一再碰到的问题之一就是维数问题。 在低维空间里解析上或计算上行得通的方法,在高维空间里往往行不通。 因此,降低维数有时就会成为处理实际问题的关键。 问题描述 考虑把d维空间的样本投影到一条直线上,形成一维空间,即把维数压缩到一维。 然而,即使样本 阅读全文

posted @ 2018-10-08 15:37 Charlie_ODD 阅读(1116) 评论(0) 推荐(0)

摘要: 出发点: 线性判别函数在进行分类决策时是最简单有效的,但在实际应用中,常常会出现不能用线性判别函数直接进行分类的情况。 采用广义线性判别函数的概念,可以通过增加维数来得到线性判别,但维数的大量增加会使在低维空间里在解析和计算上行得通的方法在高维空间遇到困难,增加计算的复杂性。 引入分段线性判别函数的 阅读全文

posted @ 2018-10-08 15:20 Charlie_ODD 阅读(1117) 评论(0) 推荐(0)