Detectron2训练visdrone记录
准备
VOC标签转换参见这篇,
注意:object_name = name_dict[box[4]] 改为 object_name = name_dict[box[5]]。为了与detectron2统一,
标签文件夹命名为Annotations,图片文件夹命名为JPEGImages,train.txt位于xxx/ImageSets/Main/。
train
构建instance
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import numpy as np
import os
import xml.etree.ElementTree as ET
from fvcore.common.file_io import PathManager
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.structures import BoxMode
__all__ = ["register_visdrone_voc"]
CLASS_NAMES = ['__background__',  # always index 0
               'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
def load_voc_instances(dirname: str, split: str):
    """
    Load Pascal VOC detection annotations to Detectron2 format.
    Args:
        dirname: Contain "Annotations", "ImageSets", "JPEGImages"
        split (str): one of "train", "test", "val", "trainval"
    """
    with PathManager.open(os.path.join(dirname, "ImageSets", "Main", split + ".txt")) as f:
        fileids = np.loadtxt(f, dtype=np.str)
    # Needs to read many small annotation files. Makes sense at local
    annotation_dirname = PathManager.get_local_path(os.path.join(dirname, "Annotations/"))
    dicts = []
    for fileid in fileids:
        anno_file = os.path.join(annotation_dirname, fileid + ".xml")
        jpeg_file = os.path.join(dirname, "JPEGImages", fileid + ".jpg")
        with PathManager.open(anno_file) as f:
            tree = ET.parse(f)
        r = {
            "file_name": jpeg_file,
            "image_id": fileid,
            "height": int(tree.findall("./size/height")[0].text),
            "width": int(tree.findall("./size/width")[0].text),
        }
        instances = []
        for obj in tree.findall("object"):
            cls = obj.find("name").text
            # We include "difficult" samples in training.
            # Based on limited experiments, they don't hurt accuracy.
            # difficult = int(obj.find("difficult").text)
            # if difficult == 1:
            # continue
            bbox = obj.find("bndbox")
            bbox = [float(bbox.find(x).text) for x in ["xmin", "ymin", "xmax", "ymax"]]
            # Original annotations are integers in the range [1, W or H]
            # Assuming they mean 1-based pixel indices (inclusive),
            # a box with annotation (xmin=1, xmax=W) covers the whole image.
            # In coordinate space this is represented by (xmin=0, xmax=W)
            bbox[0] -= 1.0
            bbox[1] -= 1.0
            instances.append(
                {"category_id": CLASS_NAMES.index(cls), "bbox": bbox, "bbox_mode": BoxMode.XYXY_ABS}
            )
        r["annotations"] = instances
        dicts.append(r)
    return dicts
def register_visdrone_voc(name, dirname, split, year):
    DatasetCatalog.register(name, lambda: load_voc_instances(dirname, split))
    MetadataCatalog.get(name).set(
        thing_classes=CLASS_NAMES, dirname=dirname, year=year, split=split
    )
train采用Faster R-CNN with FPN,backbone使用Resnext-101,群卷积32x8d,即32个group,每个group8个filter,
注意,如果因image图片损坏无法训练,修改PIL库的ImageFile.py,将LOAD_TRUNCATED_IMAGES 改为 True
from detectron2.engine import DefaultTrainer
from detectron2.config import get_cfg
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.engine import DefaultPredictor
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.evaluation import COCOEvaluator, PascalVOCDetectionEvaluator, inference_on_dataset
from detectron2.data import build_detection_test_loader
from visdrone_voc import *
import os
import cv2
import torch
register_visdrone_voc('VISDRONE_VOC', os.path.join('/home/chenzhengxi/data/VisDrone/VisDrone2018-DET-train'),
                      'train', 2012)
register_visdrone_voc('VISDRONE_VAL', os.path.join('/home/chenzhengxi/data/VisDrone/VisDrone2018-DET-val'),
                      'val', 2012)
register_visdrone_voc('VISDRONE_TEST', os.path.join('/home/chenzhengxi/data/VisDrone/VisDrone2019-DET-test-dev'),
                      'test', 2012)
cfg = get_cfg()
cfg.merge_from_file('configs/faster_rcnn_X_101_32x8d_FPN_3x.yaml')
# cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 4
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = DefaultTrainer(cfg)
#resume=True可继续训练并加载最新权重
trainer.resume_or_load(resume=False)
trainer.train()
#以下代码可指定具体权重
#cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_0229999.pth")
#checkpointer = DetectionCheckpointer(trainer.model)
#checkpointer.load(cfg.MODEL.WEIGHTS)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7   # set the testing threshold for this model
evaluator = PascalVOCDetectionEvaluator(cfg.DATASETS.TEST[0])
# val_loader = build_detection_test_loader(cfg, "VISDRONE_VAL")
# result_val = inference_on_dataset(trainer.model, val_loader, evaluator)
# print(result_val)
print(trainer.test(cfg, trainer.model, evaluator))
# predictor = DefaultPredictor(cfg)
# im = cv2.imread('/home/chenzhengxi/data/VisDrone/VisDrone2018-DET-val/JPEGImages/0000026_03500_d_0000031.jpg')
# outputs = predictor(im)
# ooo = outputs['instances'].to(torch.device("cpu"))
# boxes = ooo.pred_boxes.tensor.numpy()
# print(boxes)
# for i in range(len(boxes)):
#     cv2.rectangle(im, tuple(boxes[i, 0:2]), tuple(boxes[i, 2:4]), (0, 255, 0), 2)
#
# cv2.imshow('visdrone', im)
# cv2.waitKey(0)
测试记录
注意:数据集没有__background__,计算AP是会除0,修改pascal_voc_evaluation.py Line 90,
            for cls_id, cls_name in enumerate(self._class_names):
+++             if cls_id == 0:  # __background__
+++                 continue
                lines = predictions.get(cls_id, [""])
| AP | AP50 | AP75 | iter | datasets | 
|---|---|---|---|---|
| 20.8397 | 39.0423 | 19.9213 | 94999 | val | 
| 17.0480 | 32.8580 | 16.1755 | 94999 | test | 
| 22.2992 | 40.0259 | 21.7078 | 169999 | val | 
| 18.0168 | 33.5292 | 17.6131 | 169999 | test | 
| 22.9258 | 41.0643 | 22.4904 | 214999 | val | 
| 18.1249 | 33.7228 | 17.6461 | 214999 | test | 
| 22.8556 | 40.9861 | 22.3667 | 269999 | val | 
| 18.0256 | 33.5866 | 17.5259 | 269999 | test | 
| 可以看出效果远高于yolo,最终配置和权重下载,提取码: 74s4 | 
 
                    
                     
                    
                 
                    
                 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号