import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
# ===================== 1. 数据加载与预处理 =====================
transform = transforms.Compose([
transforms.ToTensor(), # 转换为张量并归一化到[0,1]
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 标准化到[-1,1]
])
# 加载训练集和测试集
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
# 类别标签
classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')
# 可视化样本
def imshow(img):
img = img / 2 + 0.5 # 反标准化
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# 获取一批训练样本并可视化
dataiter = iter(trainloader)
images, labels = next(dataiter)
imshow(torchvision.utils.make_grid(images[:4]))
print(' '.join(f'{classes[labels[j]]:5s}' for j in range(4)))
# ===================== 2. 构建卷积神经网络 =====================
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 卷积层+池化层
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(2, 2)
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
self.relu3 = nn.ReLU()
self.pool3 = nn.MaxPool2d(2, 2)
# 全连接层
self.fc1 = nn.Linear(128 * 4 * 4, 512)
self.relu4 = nn.ReLU()
self.fc2 = nn.Linear(512, 10) # 10个类别
def forward(self, x):
x = self.pool1(self.relu1(self.conv1(x)))
x = self.pool2(self.relu2(self.conv2(x)))
x = self.pool3(self.relu3(self.conv3(x)))
x = x.view(-1, 128 * 4 * 4) # 展平
x = self.relu4(self.fc1(x))
x = self.fc2(x)
return x
net = Net()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device) # 移动到GPU(如果可用)
# ===================== 3. 定义损失函数和优化器 =====================
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
# ===================== 4. 训练网络 =====================
epochs = 5
train_losses = []
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
# 梯度清零
optimizer.zero_grad()
# 前向传播 + 反向传播 + 优化
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99: # 每100个mini-batch打印一次
print(f' epoch: {epoch + 1}, batch: {i + 1}, loss: {running_loss / 100:.3f}')
train_losses.append(running_loss / 100)
running_loss = 0.0
print('训练完成')
# 保存模型
torch.save(net.state_dict(), './cifar10_net.pth')
# ===================== 5. 测试网络 =====================
# 加载模型(如果需要)
# net.load_state_dict(torch.load('./cifar10_net.pth'))
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data[0].to(device), data[1].to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'测试集准确率: {100 * correct / total:.2f}%')
# 按类别评估准确率
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data[0].to(device), data[1].to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(len(labels)):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print(f'类别 {classes[i]} 的准确率: {100 * class_correct[i] / class_total[i]:.2f}%')
# 绘制训练损失曲线
plt.plot(train_losses)
plt.xlabel('Mini-batch (×100)')
plt.ylabel('Loss')
plt.title('Training Loss')
plt.show()