Fourier变换与Laplace变换
Fourier
- 2021.9.30:备考,整理了两者的常用变换公式和一些基本定理,未完成。
- 2021.10.1:整理了Laplace逆变换和简单应用。
- 2022.2.12:整理完所有的内容
1. Fourier变换和逆变换公式
\(F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t} dt\)
\(f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{i\omega t} d{\omega}\)
2. 单位冲激函数、单位阶跃函数
-
单位冲激函数\(\delta(t)\)
-
定义1:
- \(t\neq0\)时,\(\delta(t)=0\)
- \(\int_{-\infty}^{+\infty}\delta(t)dt=1\)
-
定义2:
\[\delta(t)=\mathop{lim}\limits_{\tau\rightarrow 0}\delta_\tau(t)\\ \delta_\tau (t)=\begin{cases} 0,\ \ \ \ \ t<0\\ \frac{1}{\tau},\ \ \ \ \ 0\le t\le \tau\\ 0,\ \ \ \ \ t>\tau \end{cases} \] -
性质:
- 筛选:\(f(t_0)=\int_{-\infty}^{\infty}\delta(t-t_0)f(t)dt\)
- 积分:\(\int_{-\infty}^{\infty}\delta(t)dt=\int_{-\infty}^{\infty}\mathop{lim}\limits_{\tau\rightarrow0}\delta_{\tau}(t)dt=\mathop{lim}\limits_{\tau\rightarrow0}\int_{-\infty}^{\infty}\delta_{\tau}(t)dt=1\)
- 傅里叶变换:\(F[\delta(t)]=\int_{-\infty}^{\infty}\delta(t)e^{-i\omega t}dt=e^0=1\)
- 缩放:\(\delta(at)=\frac{1}{|a|}\delta(t)\rightarrow \delta(-t)=\delta(t)\),偶函数
- 导数:
- \(\int_{-\infty}^{+\infty}\delta'(t)f(t)dt=-f'(0)\)
- \(\int_{-\infty}^{\infty}\delta^{(n)}(t)f(t)dt=(-1)^nf^{(n)}(0)\)
-
-
单位阶跃函数\(u(t)\)
-
定义1:
\[u(t)=\begin{cases} 1,\ \ \ \ \ t>0\\ 0,\ \ \ \ \ t\le0 \end{cases} \] -
定义2:
\[u(t)=\frac{1}{2}[1+sgn(t)] \] -
性质:
- 与冲激函数的关系:
- \(\int_{-\infty}^{t}\delta(\tau)d\tau=u(t)\)
- \(\frac{du(t)}{dt}=\delta(t)\)
- 傅里叶变换:\(F[u(t)]=F\{\frac{1}{2}[1+sgn(t)]\}=\frac{1}{2}(2\pi\delta(\omega)+\frac{2}{i\omega})=\pi\delta(\omega)+\frac{1}{i\omega}\)
- 与冲激函数的关系:
-
3. 常用变换公式
- \(\delta(t)\longrightarrow 1\)
- \(\delta(t-t_0)=e^{-i\omega t_0}\)
- \(1\longrightarrow 2\pi\delta(\omega)\)
- \(t\longrightarrow 2\pi i\frac{d\delta(\omega)}{d\omega}\)
- \(t^k\longrightarrow 2\pi i^k\frac{d^k\delta(\omega)}{d\omega^k}\)
- \(e^{i\omega_0t}\longrightarrow2\pi\delta(\omega-\omega_0)\)
- \(u(t)\longrightarrow\frac{1}{i\omega}+\pi\delta(\omega)\)
- \(cos(at)\longrightarrow\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]\)
- \(sin(at)\longrightarrow i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]\)
4. 性质
-
线性性质
-
\(F[\alpha f_1(t)+\beta f_2(t)]\longrightarrow \alpha F_1(\omega)+\beta F_2(\omega)\)
-
\(F^{-1}[\alpha F_1(\omega)+\beta F_2(\omega)]\longrightarrow \alpha f_1(t)+\beta f_2(t)\)
-
-
尺度性质
- \(F[f(at)]\longrightarrow \frac{1}{|a|}F(\frac{\omega}{a})\)
- \(F^{-1}[F(a\omega)]\longrightarrow \frac{1}{|a|}f(\frac{t}{a})\)
-
位移性质
-
\(F[f(t\pm\tau)]\longrightarrow e^{\pm i\omega \tau}F(\omega)\)
-
\(F^{-1}[F(\omega\pm \omega_0)]\longrightarrow e^{\mp i\omega t}f(t)\)
-
-
微分性质
-
\(F[f'(t)]\longrightarrow i\omega F(\omega)\)
\(F[f^{(n)}(t)]\longrightarrow (i\omega)^nF(\omega)\)
-
\(F'(\omega)\longrightarrow -iF[tf(t)]\)
\(F^{(n)}(\omega)\longrightarrow (-i)^nF[t^nf(t)]\)
-
-
积分性质
\(F[\int_{-\infty}^tf(t)dt]\longrightarrow \frac{1}{i\omega}F(\omega)\)
-
能量积分
\(\int_{-\infty}^{+\infty}[f(t)]^2dt\longrightarrow \frac{1}{2\pi}\int_{-\infty}^{+\infty}|F(\omega)|^2d\omega\)
其中\(S(\omega)=|F(\omega)|^2\)称为能量密度函数或能量谱函数
-
卷积
- 定义:\(f_1(t)*f_2(t)=\int_{-\infty}^{+\infty}f_1(\tau)f_2(t-\tau)d\tau\)
- 卷积运算规律:
- \(f_1(t)*f_2(t)=f_2(t)*f_1(t)\)
- \(f_1(t)*[f_2(t)*f_3(t)]=[f_1(t)*f_2(t)]*f_3(t)\)
- \(f_1(t)*[f_2(t)+f*3(t)]=f_1(t)*f_2(t)+f_1(t)*f_3(t)\)
- \(|f_1(t)*f_2(t)|\leq|f_1(t)|*|f_2(t)|\)
- 卷积定理:
- \(F[f_1(t)*f_2(t)]=F_1(\omega) \cdot F_2(\omega)\)
- \(F^{-1}[F_1(\omega)\cdot F_2(\omega)]=f_1(t)*f_2(t)\)
- 频谱卷积定理:
- \(F[f_1(t)f_2(t)]=\frac{1}{2\pi}F_1(\omega)*F_2(\omega)\)
- \(F[f_1(t)f_2(t)\cdots f_n(t)]=\frac{1}{(2\pi)^{n-1}}F_1(\omega)*F_2(\omega)*\cdots*F_n(\omega)\)
Laplace
1. 常用变换公式
- \(\delta(t) \longrightarrow 1\)
- \(1(t)\longrightarrow \frac{1}{s}\)
- \(u(t)\longrightarrow \frac{1}{s}\)
- \(t\longrightarrow \frac{1}{s^2}\)
- \(\frac{t^n}{n!} \longrightarrow \frac{1}{s^{n+1}}\)
- \(e^{-at}\longrightarrow\frac{1}{s+a}\)
- \(te^{-at}\longrightarrow\frac{1}{(s+a)^2}\)
- \(sin(at)\longrightarrow\frac{a}{s^2+a^2}\)
- \(cos(at)\longrightarrow\frac{s}{s^2+a^2}\)
- \(a^{\frac{t}{T}}\longrightarrow\frac{1}{s-\frac{1}{T}lna}\)
2. 性质
-
线性性质
-
\(L[af(t)+bg(t)]=aF(s)+bG(s)\)
-
\(L^{-1}[aF(s)+bG(s)]=af(t)+bg(t)\)
-
-
尺度性质
- \(L[f(at)]=\frac{1}{|a|}F(\frac{s}{a})\)
- \(L[f(at-b)]=\frac{1}{|a|}F(\frac{s}{a})e^{-s\frac{b}{a}}\)
-
延迟性质
-
\(L[f(t-\tau)]=e^{-s\tau}F(s)\)
-
\(L[f(t-\tau)u(t-\tau)]=e^{-s\tau}F(s)\)
-
\(L^{-1}[e^{-s\tau}F(s)]=f(t-\tau)u(t-\tau)\)
-
-
位移性质
- \(L[e^{at}f(t)]=F(s-a)\)
- \(L^{-1}[F(s-a)]=e^{at}f(t)\)
-
微分性质
-
\(L[f'(t)]=sF(s)-f(0)\)
\(L[f^{(n)}(t)]=s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-...-f^{(n-1)}(0)\)
其中\(f^{(k)}(0)\)应理解为\(\mathop{lim}\limits_{t\rightarrow0^+}f^{(k)}(t)\)
-
\(F'(s)=-L[tf(t)]\)
\(F^{(n)}(s)=(-1)^nL[t^nf(t)]\)
-
-
积分性质
-
性质
-
\(L[\int_0^tf(\tau)d\tau]=\frac{1}{s}F(s)\)
-
\(L[\frac{f(t)}{t}]=\int_s^{\infty}F(s)ds\)
\(L[\frac{f(t)}{t^n}]=\int_s^{\infty}ds\int_s^{\infty}ds...\int_s^{\infty}F(s)ds\)(共积分n次)
-
\(f(t)=tL^{-1}[\int_s^\infty F(s)ds]\)
-
-
用Laplace变换计算广义积分:
- \(F(s)=\int_0^{+\infty}f(t)e^{-st}dt\)
- \(F'(s)=-\int_0^{+\infty}tf(t)e^{-st}dt\)
- \(F(0)=\int_0^{+\infty}f(t)dt\)
- \(F'(0)=-\int_0^{+\infty}tf(t)dt\)
- \(\int_s^{\infty}F(s)ds=\int_0^{+\infty}\frac{f(t)}{t}e^{-st}dt\)
- \(\int_0^{\infty}F(s)ds=\int_0^{+\infty}\frac{f(t)}{t}dt\)
-
-
初值定理
若\(f(t)\)在\(t\geq0\)时可微,\(f'(t)\)满足Laplace变换存在定理的条件,又设\(L[f(t)]=F(s),\mathop{lim}\limits_{s\rightarrow \infty}sF(s)\)存在,则:
\[f(0)=\mathop{lim}\limits_{s\rightarrow \infty}sF(s) \] -
终值定理
设\(L[f(t)]=F(s)\),\(sF(s)\)在包含虚轴的右半平面内解析,并且\(\mathop{lim}\limits_{s\rightarrow0}sF(s)\)存在,则:
\[f(+\infty)=\mathop{lim}\limits_{t\rightarrow +\infty}f(t)=\mathop{lim}\limits_{s\rightarrow 0}sF(s) \] -
卷积
-
定义:\(f_1(t)*f_2(t)=\int_{-\infty}^{+\infty}f_1(\tau)f_2(t-\tau)d\tau\)
当\(t<0\)时,\(f_1(t)=f_2(t)=0\),则有:
\(f_1(t)*f_2(t)=\int_0^tf_1(\tau)f_2(t-\tau)d\tau,(t\geq0)\)
-
卷积运算规律:
- \(f_1(t)*f_2(t)=f_2(t)*f_1(t)\)
- \(f_1(t)*[f_2(t)*f_3(t)]=[f_1(t)*f_2(t)]*f_3(t)\)
- \(f_1(t)*[f_2(t)+f*3(t)]=f_1(t)*f_2(t)+f_1(t)*f_3(t)\)
- \(|f_1(t)*f_2(t)|\leq|f_1(t)|*|f_2(t)|\)
-
卷积定理:
\(L[f_1(t)*f_2(t)]=F_1(s)\cdot F_2(s)\)
-
3. Laplace逆变换
若函数\(f(t)\)满足Laplace变换存在定理的条件,\(L[f(t)]=F(s)\),c为增长指数,则\(L^{-1}[F(s)]\)由下式给出:
- t为f(t)连续点时
- t为f(t)间断点时:\[\frac{1}{2}[f(t+0)+f(t-0)]=\frac{1}{2\pi i}\int_{\beta-i\infty}^{\beta+\infty}F(s)e^{st}ds\\ Re(s)=\beta>c \]
我们称(1)中1式为复反演积分公式,其中的积分应理解为:
4. Laplace变换应用
-
解线性常微分方程
\(ex1.\) 求微分方程\(y''(t)+4y(t)=0\)满足初始条件\(y|_{t=0}=-2,y'|_{t=0}=4\)的特解:
设\(L[y(t)]=Y(s)\),对方程两边取Laplace变换并带入条件得:
\[s^2Y(s)-sy(0)-y'(0)+4Y(s)=0 \]解得:
\[Y(s)=\frac{-2s+4}{s^2+4}=\frac{-2s}{s^2+4}+\frac{4}{s^2+4} \]取逆变换得:
\[y(t)=L^{-1}[Y(s)]=-2cos(2t)+2sin(2t) \]\(ex2.\) 求方程\(y''-2y'+y=0\)满足初始条件\(y|_{t=0}=0,y|_{t=1}=2\)的特解:
设\(L[y(t)]=Y(s)\),对方程两边取Laplace变换得:
\[s^2Y(s)-sy(0)-y'(0)-2sy(0)+Y(s)=0 \]于是:
\[Y(s)=\frac{y'(0)}{(s-1)^2} \]取逆变换得:
\[y(t)=L^{-1}[\frac{y'(0)}{(s-1)^2}]=y'(0)te^t \]将\(t=1\)带入上式得\(y'(0)=2e^{-1}\),从而原方程得解为:
\[y(t)=2te^{t-1} \] -
解常系数线性常微分方程组
\(ex3.\) 求方程组\(\begin{cases}x''-2y'-x=0\\x'-y=0\end{cases}\)满足初始条件\(x|_{t=0}=0,x'|_{t=0}=1,y|_{t=0}=1\)的特解:
设\(L[x(t)]=X(s),L[y(t)]=Y(s)\),对方程两边取Laplace变换,带入初始条件得:
\[\begin{cases}s^2X(s)-sx(0)-x'(0)-2[sY(s)-y(0)]-X(s)=0\\ sX(s)-x(0)-Y(s)=0 \end{cases} \]整理化简后,得到:
\[\begin{cases} (s^2-1)X(s)-2sY(s)+1=0\\ sX(s)-Y(s)=0 \end{cases} \]解方程组,得到:
\[\begin{cases} X(s)=\frac{1}{s^2+1}\\ Y(s)=\frac{s}{s^2+1} \end{cases} \]取逆变换得:
\[\begin{cases} x(t)=sint\\ y(t)=cost \end{cases} \] -
解积分微分方程
\(ex4.\) 求方程\(y'-4y+4\int_0^tydt=\frac{1}{3}t^3\)满足初始条件\(y|_{t=0}\)的特解:
设\(L[y(t)]=Y(s)\),对方程两边取Laplace变换,带入初始条件得:
\[sY(s)-4Y(s)+\frac{4Y(s)}{s}=\frac{2}{s^4} \]解得:
\[Y(s)=\frac{2}{s^3(s-2)^2} \]将\(Y(s)\)表示成部分分式之和:
\[Y(s)=\frac{3}{8}\cdot\frac{1}{s}+\frac{1}{2}\cdot\frac{1}{s^2}+\frac{1}{2}\cdot\frac{1}{s^3}-\frac{3}{8}\cdot\frac{1}{s-2}+\frac{1}{4}\cdot\frac{1}{(s-2)^2} \]取Laplace逆变换,即得原方程的解为:
\[y(t)=\frac{3}{8}+\frac{1}{2}t+\frac{1}{4}t^2-\frac{3}{8}e^{2t}+\frac{1}{4}te^{2t} \]