多线程-3(同步)

SemaphoreSlim类

代码:

static SemaphoreSlim semaphoreSlim = new SemaphoreSlim(4);//只允许4个并行执行的线程
        public  static void AccessDataBase(string name,int seconde)
        {
            Console.WriteLine("{0} 等待访问数据库", name);
            semaphoreSlim.Wait();
            Console.WriteLine("{0} 授予对数据库的访问权", name);
            Thread.Sleep(TimeSpan.FromSeconds(seconde));
            Console.WriteLine("{0} 完成", name);
            semaphoreSlim.Release();
        }
        static void Main(string[] args)
        {
            for (int i = 0; i < 6; i++)
            {
                string threadName = "Thread" + i;
                int secondsToWait = 2 + 2 * i;
                var t = new Thread(() => AccessDataBase(threadName, secondsToWait));
                t.Start();
            }
        }
View Code

 

 

 主线程启动,创建SemaphoreSlim的一个实例,在构造函数中指定允许并发线程数量,启动6个不同名称和不同初始运行时间的线程,借助信号系统限制访问数据的并发数, 只允许4个线程获取, 注意:.当线程1完成后,线程0才进行授权访问。

 

AutoResetEven类

 

  private static AutoResetEvent workResetEvent = new AutoResetEvent(false);
        private static AutoResetEvent mainRestEvent = new AutoResetEvent(false);

        static void Process(int seconds)
        {
            Console.WriteLine("开始一项长期的工作");
            Thread.Sleep(TimeSpan.FromSeconds(seconds));
            Console.WriteLine("work执行完毕");
            workResetEvent.Set();
            Console.WriteLine("等待主线程完成它的工作");
            mainRestEvent.WaitOne();
            Console.WriteLine("开始第二次操作");
            Thread.Sleep(TimeSpan.FromSeconds(seconds));
            Console.WriteLine("工作完成");
            workResetEvent.Set();
        }
        static void Main(string[] args)
        {
            var t = new Thread(() => Process(10));
            t.Start();
            workResetEvent.WaitOne();
            Console.WriteLine("第一次操作完成");
            Console.WriteLine("在第二个线程上执行操作");
            Thread.Sleep(TimeSpan.FromSeconds(5));
            mainRestEvent.Set();
            Console.WriteLine("现在在第二个线程上运行第二个操作");
            workResetEvent.WaitOne();
            Console.WriteLine("第二个线程执行完毕");
        }
View Code

 

AutoResetEvent类采用的是内核时间模式,所以等待时间不能太长。使用ManualResetEventslim类更好。

ManualResetEventSlim类

 

 static ManualResetEventSlim mainEvent = new ManualResetEventSlim(false);
        static void TravleThroughGates(string threadName,int seconds)
        {
            Console.WriteLine("{0} falls to sleep",threadName);
            Thread.Sleep(TimeSpan.FromSeconds(seconds));
            Console.WriteLine("{0} waits for  the gates to open!",threadName);
            mainEvent.Wait();//
            Console.WriteLine("{0} enters the gates!", threadName);
        }
        static void Main(string[] args)
        {
            var t1 = new Thread(() => TravleThroughGates("threadName 1", 5));
            var t2 = new Thread(() => TravleThroughGates("threadName 2", 6));
            var t3 = new Thread(() => TravleThroughGates("threadName 3", 12));
            t1.Start();
            t2.Start();
            t3.Start();
            Thread.Sleep(TimeSpan.FromSeconds(6));
            Console.WriteLine("The gates are now open!");
            mainEvent.Set();//
            Thread.Sleep(TimeSpan.FromSeconds(2));
            mainEvent.Reset();//将事件状态设置为非终止,从而导致线程受阻
            Console.WriteLine("The gates have been closed!");
            Thread.Sleep(TimeSpan.FromSeconds(10));
            Console.WriteLine("The gates are now open for the seconds time!");
            mainEvent.Set();
            Thread.Sleep(TimeSpan.FromSeconds(2));
            Console.WriteLine("The gates have been closed!");
            mainEvent.Reset();

        }

这里启动了三个线程,同时进行等待。ManualResetEventSlim 的set是允许准备好的线程接受信号并继续工作。

CountDownEvent类

CountDownEvent信号类来等待直到一定数量的操作完成。

static CountdownEvent countdownEvent = new CountdownEvent(2);
        static void PerformOperation(string message,int seconds)
        {
            Thread.Sleep(TimeSpan.FromSeconds(seconds));
            Console.WriteLine(message);
            countdownEvent.Signal();
        }
        static void Main(string[] args)
        {
            Console.WriteLine("Starting two operations");
            var t1 = new Thread(() => PerformOperation("Operation 1 is completd", 4));
            var t2 = new Thread(() => PerformOperation("Operation 2 is completd", 8));
            t1.Start();
            t2.Start();
            countdownEvent.Wait();
            Console.WriteLine("Both operation have been completd");
            countdownEvent.Dispose();
        }

 

 

 

启动两个线程,当它们执行完成后会发生信号。一旦第二个线程完成,主程序会从等待CountdownEvent的状态中返回并继续执行。当针对需要等待多个异步操作的情形,方法非常遍历。当然如果某个线程出现死锁等情况,一直等待下,那么会一直等待。

Barrier类

Barrier类组织多个线程及时在某个时刻碰面。并提供了一个回调函数,每次线程调用了SignalAndWait方法后该回调函数会执行

 static Barrier barrier = new Barrier(2, b => Console.WriteLine("End of  phase {0}", b.CurrentPhaseNumber + 1));
        static void PlayMusic(string name,string messages,int seconds)
        {
            for (int i = 0; i < 3; i++)
            {
                Console.WriteLine("-----------------------------");
                Thread.Sleep(TimeSpan.FromSeconds(seconds));
                Console.WriteLine("{0} starts to {1}", name, messages);
                Thread.Sleep(TimeSpan.FromSeconds(seconds));
                Console.WriteLine("{0} finshes to {1}", name, messages);
                barrier.SignalAndWait();
            }
        }
        static void Main(string[] args)
        {
            var t1 = new Thread(() => PlayMusic("the guitarist", "play an amazing solo", 5));
            var t2 = new Thread(() => PlayMusic("the singer", "sing his song", 2));
            t1.Start();
            t2.Start();

        }

使用Barrier,指定我们想同步两个线程。这两个线程任意一个调用了SignalAndWait方法后,会执行一个回调来打印出阶段

 

 ReaderWriterLockSlim

ReaderWriterLockSlim类来创建一个线程安全的机制,在多线程中对一个集合进行读写操作。ReaderWriterLockSlim代表一个管理资源访问的锁,允许多个线程同时读取,以及独占写。

static ReaderWriterLockSlim readerWriterLockSlim = new ReaderWriterLockSlim();
        static Dictionary<int, int> items = new Dictionary<int, int>();
        static void Read()
        {
            Console.WriteLine("Reader Contexts of a dictionary");
            while(true)
            {
                try
                {
                    readerWriterLockSlim.EnterReadLock();
                    foreach (var key in items.Keys)
                    {
                        Thread.Sleep(TimeSpan.FromSeconds(0.1));
                    }
                }
                finally
                {
                    readerWriterLockSlim.ExitReadLock();
                }
            }
        }
        static void Writer(string threadName)
        {
            while(true)
            {
                try
                {
                    int newkey = new Random().Next(250);
                    readerWriterLockSlim.EnterUpgradeableReadLock();
                    if(!items.ContainsKey(newkey))
                    {
                        try
                        {
                            readerWriterLockSlim.EnterWriteLock();
                            items[newkey] = 1;
                            Console.WriteLine("New key {0} is added to  a  dictionary by a {1}",newkey, threadName);
                        }
                        finally
                        {
                            readerWriterLockSlim.ExitWriteLock();
                        }
                    }
                    Thread.Sleep(TimeSpan.FromSeconds(0.1));
                }
                catch (Exception)
                {

                    readerWriterLockSlim.ExitUpgradeableReadLock();
                }
            }
        }
        static void Main(string[] args)
        {
            new Thread(Read) { IsBackground = true }.Start();
            new Thread(Read) { IsBackground = true }.Start();
            new Thread(Read) { IsBackground = true }.Start();

            new Thread(() => Writer("Thread 1")){ IsBackground = true }.Start();
            new Thread(() => Writer("Thread 2")) { IsBackground = true }.Start();
            Thread.Sleep(TimeSpan.FromSeconds(30));
        }
View Code

 

 

同时运行了三个程序来从字典中读取数据,还有另外两个线程向该字典中写入数据,使用ReaderWriterLockSlim类实现线程安全。

这里使用两种锁:读锁允许多线程读取数据,写锁在被释放前会阻塞了其他线程的所有操作,先获取读锁后读取数据,如果发现必须修改底层集合,只需使用EnterWriterLock方法升级锁,然后快速执行写操作。

SpanWait类

如果不使用内核模型的方式来使线程等待。SpanWait是一个混合同步结构,设计为使用用户模式等待一段时间,然后切换到内核模式以节省CPU时间

 static volatile bool isCompleted = false;//volatile允许多个线程访问,呈现最新的
        static void UserModelWait()
        {
            while(!isCompleted)
            {
                Console.WriteLine(".");
            }
            Console.WriteLine("Waiting is complete");
        }
        static void HybridSpinWait()
        {
            var w = new SpinWait();
            while (!isCompleted)
            {
                w.SpinOnce();
                Console.WriteLine(w.NextSpinWillYield);
            }
            Console.WriteLine("Waiting is complete");
        }
        static void Main(string[] args)
        {
            var t1 = new Thread(UserModelWait);
            var t2 = new Thread(HybridSpinWait);

            Console.WriteLine("Running user mode waiting");
            t1.Start();
            Thread.Sleep(20);
            isCompleted = true;
            Thread.Sleep(TimeSpan.FromSeconds(1));
            isCompleted = false;
            Console.WriteLine("Running hybrid SpinWait construct waiting");
            Thread.Sleep(5);
            isCompleted = true;
        }

 

 

定义一个线程,将执行一个无止境的循环,直到20毫秒后主线程设置isCompleted变量为true,我们可以试验周期为20-30秒,通过windows任务管理器测量CPU的负载情况。

用volatie关键字来声明iscompleted静态字段,volatie字段不会被编辑器和处理器优化,只能被单个线程访问。

 

 

 

 

 
posted @ 2020-04-06 19:28  梦一回  阅读(175)  评论(0编辑  收藏  举报