JAVA【Netty】第二讲
Netty 概述
- Netty 高性能架构设计
- 线程模型基本介绍
- 传统阻塞 I/O 服务模型
- Reactor 模式
- 单 Reactor 单线程
- 单 Reactor 多线程
- 主从 Reactor 多线程
- Reactor 模式小结
- Netty 模型
- 异步模型
- 快速入门实例 - HTTP服务
- Bootstrap、ServerBootstrap
- Future、ChannelFuture
- Channel
- Selector
- ChannelHandler 及其实现类
- Pipeline 和 ChannelPipeline
- ChannelHandlerContext
- ChannelOption
- EventLoopGroup 和其实现类 NioEventLoopGroup
- Unpooled 类
- Netty 应用实例-群聊系统
- Netty 心跳检测机制案例
- Netty 通过 WebSocket 编程实现服务器和客户端长连接
原生 NIO 存在的问题
NIO的类库和API繁杂,使用麻烦:需要熟练掌握Selector、ServerSocketChannel、SocketChannel、ByteBuffer等。- 需要具备其他的额外技能:要熟悉
Java多线程编程,因为NIO编程涉及到Reactor模式,你必须对多线程和网络编程非常熟悉,才能编写出高质量的NIO程序。 - 开发工作量和难度都非常大:例如客户端面临断连重连、网络闪断、半包读写、失败缓存、网络拥塞和异常流的处理等等。
JDK NIO的Bug:例如臭名昭著的Epoll Bug,它会导致Selector空轮询,最终导致CPU100%。直到JDK1.7版本该问题仍旧存在,没有被根本解决。
Netty 官网说明
官网:https://netty.io/
Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients.
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XF49JJrn-1658137018796)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0001.png?msec=1658136012610)]](https://img-blog.csdnimg.cn/bddb965f6a894646ad9b83af3565624c.png)
Netty 的优点
Netty 对 JDK 自带的 NIO 的 API 进行了封装,解决了上述问题。
- 设计优雅:适用于各种传输类型的统一
API阻塞和非阻塞Socket;基于灵活且可扩展的事件模型,可以清晰地分离关注点;高度可定制的线程模型-单线程,一个或多个线程池。 - 使用方便:详细记录的
Javadoc,用户指南和示例;没有其他依赖项,JDK5(Netty3.x)或6(Netty4.x)就足够了。 - 高性能、吞吐量更高:延迟更低;减少资源消耗;最小化不必要的内存复制。
- 安全:完整的
SSL/TLS和StartTLS支持。 - 社区活跃、不断更新:社区活跃,版本迭代周期短,发现的
Bug可以被及时修复,同时,更多的新功能会被加入。
Netty 版本说明
Netty版本分为Netty 3.x和Netty 4.x、Netty 5.x- 因为
Netty 5出现重大bug,已经被官网废弃了,目前推荐使用的是Netty 4.x的稳定版本 - 目前在官网可下载的版本
Netty 3.x、Netty 4.0.x和Netty 4.1.x - 在本套课程中,我们讲解
Netty4.1.x版本 Netty下载地址:https://bintray.com/netty/downloads/netty/
Netty 高性能架构设计
线程模型基本介绍
- 不同的线程模式,对程序的性能有很大影响,为了搞清
Netty线程模式,我们来系统的讲解下各个线程模式,最后看看Netty线程模型有什么优越性。 - 目前存在的线程模型有:传统阻塞
I/O服务模型 和Reactor模式 - 根据
Reactor的数量和处理资源池线程的数量不同,有3种典型的实现
- 单
Reactor单线程; - 单
Reactor多线程; - 主从
Reactor多线程
Netty线程模式(Netty主要基于主从Reactor多线程模型做了一定的改进,其中主从Reactor多线程模型有多个Reactor)
传统阻塞 I/O 服务模型
工作原理图
- 黄色的框表示对象,蓝色的框表示线程
- 白色的框表示方法(
API)
模型特点
- 采用阻塞
IO模式获取输入的数据 - 每个连接都需要独立的线程完成数据的输入,业务处理,数据返回
问题分析
- 当并发数很大,就会创建大量的线程,占用很大系统资源
- 连接创建后,如果当前线程暂时没有数据可读,该线程会阻塞在 Handler对象中的
read操作,导致上面的处理线程资源浪费
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0UBBKPLU-1658137018800)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0002.png?msec=1658136012625)]](https://img-blog.csdnimg.cn/9454dce81d1346328456196083d31664.png)
Reactor 模式
针对传统阻塞 I/O 服务模型的 2 个缺点,解决方案:
基于 I/O 复用模型:多个连接共用一个阻塞对象ServiceHandler,应用程序只需要在一个阻塞对象等待,无需阻塞等待所有连接。当某个连接有新的数据可以处理时,操作系统通知应用程序,线程从阻塞状态返回,开始进行业务处理。
Reactor 在不同书中的叫法:
-
反应器模式
-
分发者模式(Dispatcher)
-
通知者模式(notifier)
-
基于线程池复用线程资源:不必再为每个连接创建线程,将连接完成后的业务处理任务分配给线程进行处理,一个线程可以处理多个连接的业务。(解决了当并发数很大时,会创建大量线程,占用很大系统资源)
-
基于
I/O复用模型:多个客户端进行连接,先把连接请求给ServiceHandler。多个连接共用一个阻塞对象ServiceHandler。假设,当C1连接没有数据要处理时,C1客户端只需要阻塞于ServiceHandler,C1之前的处理线程便可以处理其他有数据的连接,不会造成线程资源的浪费。当C1连接再次有数据时,ServiceHandler根据线程池的空闲状态,将请求分发给空闲的线程来处理C1连接的任务。(解决了线程资源浪费的那个问题)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FsouO3rS-1658137018801)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0003.png?msec=1658136012610)]](https://img-blog.csdnimg.cn/5e0f26a0d4114c199e1111625ea6bb4e.png)
I/O 复用结合线程池,就是 Reactor 模式基本设计思想,如图
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kJNgt6m9-1658137018801)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0004.png?msec=1658136012631)]](https://img-blog.csdnimg.cn/ee63505277be45cca917c1621c3d6f56.png)
对上图说明:
Reactor模式,通过一个或多个输入同时传递给服务处理器(ServiceHandler)的模式(基于事件驱动)- 服务器端程序处理传入的多个请求,并将它们同步分派到相应的处理线程,因此
Reactor模式也叫Dispatcher模式 Reactor模式使用IO复用监听事件,收到事件后,分发给某个线程(进程),这点就是网络服务器高并发处理关键
原先有多个Handler阻塞,现在只用一个ServiceHandler阻塞
Reactor 模式中核心组成
Reactor(也就是那个ServiceHandler):Reactor在一个单独的线程中运行,负责监听和分发事件,分发给适当的处理线程来对IO事件做出反应。它就像公司的电话接线员,它接听来自客户的电话并将线路转移到适当的联系人;Handlers(处理线程EventHandler):处理线程执行I/O事件要完成的实际事件,类似于客户想要与之交谈的公司中的实际官员。Reactor通过调度适当的处理线程来响应I/O事件,处理程序执行非阻塞操作。
Reactor 模式分类
根据 Reactor 的数量和处理资源池线程的数量不同,有 3 种典型的实现
- 单
Reactor单线程 - 单
Reactor多线程 - 主从
Reactor多线程
单 Reactor 单线程
原理图,并使用 NIO 群聊系统验证
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-P4KZ5Yzi-1658137018802)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0005.png?msec=1658136012630)]](https://img-blog.csdnimg.cn/0c4ae1e2b60246eea3ce3d67d972fc22.png)
方案说明
Select是前面I/O复用模型介绍的标准网络编程API,可以实现应用程序通过一个阻塞对象监听多路连接请求Reactor对象通过Select监控客户端请求事件,收到事件后通过Dispatch进行分发- 如果是建立连接请求事件,则由
Acceptor通过Accept处理连接请求,然后创建一个Handler对象处理连接完成后的后续业务处理 - 如果不是建立连接事件,则
Reactor会分发调用连接对应的Handler来响应 Handler会完成Read→ 业务处理 →Send的完整业务流程
结合实例:服务器端用一个线程通过多路复用搞定所有的 IO 操作(包括连接,读、写等),编码简单,清晰明了,但是如果客户端连接数量较多,将无法支撑,前面的 NIO 案例就属于这种模型。
方案优缺点分析
- 优点:模型简单,没有多线程、进程通信、竞争的问题,全部都在一个线程中完成
- 缺点:性能问题,只有一个线程,无法完全发挥多核
CPU的性能。Handler在处理某个连接上的业务时,整个进程无法处理其他连接事件,很容易导致性能瓶颈 - 缺点:可靠性问题,线程意外终止,或者进入死循环,会导致整个系统通信模块不可用,不能接收和处理外部消息,造成节点故障
- 使用场景:客户端的数量有限,业务处理非常快速,比如
Redis在业务处理的时间复杂度O(1)的情况
单 Reactor 多线程
方案说明
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IjN7YBRE-1658137018802)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0006.png?msec=1658136012632)]](https://img-blog.csdnimg.cn/afdd128873694401b69d76e0b8b5881d.png)
Reactor对象通过Select监控客户端请求事件,收到事件后,通过Dispatch进行分发- 如果是建立连接请求,则由
Acceptor通过accept处理连接请求,然后创建一个Handler对象处理完成连接后的各种事件 - 如果不是连接请求,则由
Reactor分发调用连接对应的handler来处理(也就是说连接已经建立,后续客户端再来请求,那基本就是数据请求了,直接调用之前为这个连接创建好的handler来处理) handler只负责响应事件,不做具体的业务处理(这样不会使handler阻塞太久),通过read读取数据后,会分发给后面的worker线程池的某个线程处理业务。【业务处理是最费时的,所以将业务处理交给线程池去执行】worker线程池会分配独立线程完成真正的业务,并将结果返回给handlerhandler收到响应后,通过send将结果返回给client
方案优缺点分析
- 优点:可以充分的利用多核
cpu的处理能力 - 缺点:多线程数据共享和访问比较复杂。
Reactor承担所有的事件的监听和响应,它是单线程运行,在高并发场景容易出现性能瓶颈。也就是说Reactor主线程承担了过多的事
主从 Reactor 多线程
工作原理图
针对单 Reactor 多线程模型中,Reactor 在单线程中运行,高并发场景下容易成为性能瓶颈,可以让 Reactor 在多线程中运行
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4P7DiTQi-1658137018803)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0007.png?msec=1658136012629)]](https://img-blog.csdnimg.cn/e29d9af90c9f4507a025de0c1fcf033a.png)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IKGb2sn0-1658137018803)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0008.jpg?msec=1658136012693)]](https://img-blog.csdnimg.cn/280f28e262c946eba3a9454b8941e35b.jpeg)
SubReactor是可以有多个的,如果只有一个SubReactor的话那和
单 Reactor 多线程就没什么区别了。
Reactor主线程MainReactor对象通过select监听连接事件,收到事件后,通过Acceptor处理连接事件- 当
Acceptor处理连接事件后,MainReactor将连接分配给SubReactor subreactor将连接加入到连接队列进行监听,并创建handler进行各种事件处理- 当有新事件发生时,
subreactor就会调用对应的handler处理 handler通过read读取数据,分发给后面的worker线程处理worker线程池分配独立的worker线程进行业务处理,并返回结果handler收到响应的结果后,再通过send将结果返回给clientReactor主线程可以对应多个Reactor子线程,即MainRecator可以关联多个SubReactor
Scalable IO in Java 对 Multiple Reactors 的原理图解
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DhnZHVCv-1658137018804)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0009.jpg?msec=1658136012631)]](https://img-blog.csdnimg.cn/f2996aeb669947eb805a3f736a739270.jpeg)
方案优缺点说明
- 优点:父线程与子线程的数据交互简单职责明确,父线程只需要接收新连接,子线程完成后续的业务处理。
- 优点:父线程与子线程的数据交互简单,
Reactor主线程只需要把新连接传给子线程,子线程无需返回数据。 - 缺点:编程复杂度较高
结合实例:这种模型在许多项目中广泛使用,包括 Nginx 主从 Reactor 多进程模型,Memcached 主从多线程,Netty 主从多线程模型的支持
Reactor 模式小结
3 种模式用生活案例来理解
- 单
Reactor单线程,前台接待员和服务员是同一个人,全程为顾客服 - 单
Reactor多线程,1个前台接待员,多个服务员,接待员只负责接待 - 主从
Reactor多线程,多个前台接待员,多个服务生
Reactor 模式具有如下的优点
- 响应快,不必为单个同步时间所阻塞,虽然
Reactor本身依然是同步的(比如你第一个SubReactor阻塞了,我可以调下一个 SubReactor为客户端服务) - 可以最大程度的避免复杂的多线程及同步问题,并且避免了多线程/进程的切换开销
- 扩展性好,可以方便的通过增加
Reactor实例个数来充分利用CPU资源 - 复用性好,
Reactor模型本身与具体事件处理逻辑无关,具有很高的复用性
Netty 模型
讲解netty的时候采用的是先写代码体验一下,再细讲里面的原理。前面看不懂的可以先不用纠结,先往后面看,后面基本都会讲清楚
工作原理示意图1 - 简单版
Netty 主要基于主从 Reactors 多线程模型(如图)做了一定的改进,其中主从 Reactor 多线程模型有多个 Reactor
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Zff0fOWR-1658137018804)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0010.png?msec=1658136012615)]](https://img-blog.csdnimg.cn/4a1c68bf996549d3a8964e73ef6b6bb8.png)
对上图说明
BossGroup线程维护Selector,只关注Accecpt- 当接收到
Accept事件,获取到对应的SocketChannel,封装成NIOScoketChannel并注册到Worker线程(事件循环),并进行维护 - 当
Worker线程监听到Selector中通道发生自己感兴趣的事件后,就进行处理(就由handler),注意handler已经加入到通道
工作原理示意图2 - 进阶版
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pINlqRxR-1658137018805)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0011.png?msec=1658136012624)]](https://img-blog.csdnimg.cn/3bc562d49ce74f748edaff02b1e44d16.png)
BossGroup有点像主Reactor 可以有多个,WorkerGroup则像SubReactor一样可以有多个。
工作原理示意图3 - 详细版
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MGIiMpXs-1658137018805)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0012.png?msec=1658136012624)]](https://img-blog.csdnimg.cn/e333d270f3b84c07ad97c8ac17f6e388.png)
Netty抽象出两组线程池 ,BossGroup专门负责接收客户端的连接,WorkerGroup专门负责网络的读写BossGroup和WorkerGroup类型都是NioEventLoopGroupNioEventLoopGroup相当于一个事件循环组,这个组中含有多个事件循环,每一个事件循环是NioEventLoopNioEventLoop表示一个不断循环的执行处理任务的线程,每个NioEventLoop都有一个Selector,用于监听绑定在其上的socket的网络通讯NioEventLoopGroup可以有多个线程,即可以含有多个NioEventLoop- 每个
BossGroup下面的NioEventLoop循环执行的步骤有3步
- 轮询
accept事件 - 处理
accept事件,与client建立连接,生成NioScocketChannel,并将其注册到某个workerGroupNIOEventLoop上的Selector - 继续处理任务队列的任务,即
runAllTasks
- 每个
WorkerGroupNIOEventLoop循环执行的步骤
- 轮询
read,write事件 - 处理
I/O事件,即read,write事件,在对应NioScocketChannel处理 - 处理任务队列的任务,即
runAllTasks
- 每个
WorkerNIOEventLoop处理业务时,会使用pipeline(管道),pipeline中包含了channel(通道),即通过pipeline可以获取到对应通道,管道中维护了很多的处理器。(这个点目前只是简单的讲,后面重点说)
Netty 快速入门实例 - TCP 服务
实例要求:使用 IDEA 创建 Netty 项目
Netty服务器在6668端口监听,客户端能发送消息给服务器"hello,服务器~"- 服务器可以回复消息给客户端"hello,客户端~"
- 目的:对
Netty线程模型有一个初步认识,便于理解Netty模型理论 - 编写服务端
- 编写客户端
- 对
netty程序进行分析,看看netty模型特点 - 说明:创建
Maven项目,并引入Netty包 - 代码如下
NettyServer
package com.qf.netty.simple;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
public class NettyServer {
public static void main(String[] args) throws Exception {
//创建boss group 和worker group
//DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt("io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
//bossGroup指定的是一条线程
//workerGroup默认情况下是核心数*2
EventLoopGroup bossGroup=new NioEventLoopGroup(1);
EventLoopGroup workerGroup=new NioEventLoopGroup();
//创建服务端的启动对象,设置配置参数
ServerBootstrap bootstrap = new ServerBootstrap();
//使用连式编程来进行设置
try {
bootstrap.group(bossGroup, workerGroup) //设置两个线程组
.channel(NioServerSocketChannel.class) //使用NioServerSocketChannel 作为数据通道
.option(ChannelOption.SO_BACKLOG,128) //设置队列的连接数量
.childOption(ChannelOption.SO_KEEPALIVE, true) //设置保持活动的连接数
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel sc) throws Exception {
System.out.println("服务器的值:"+sc.hashCode());
sc.pipeline().addLast(new NettyServerHandler());
}
});
System.out.println("服务器已经准备好....");
//绑定端口
ChannelFuture sync = bootstrap.bind(6668).sync();
//对我们的future对象进行监听,异步关注响应是否成功
sync.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture channelFuture) throws Exception {
if (sync.isSuccess()){
System.out.println("端口 6668 成功");
}else if (sync.isCancelled()){
System.out.println("端口 6668 失败");
}
}
});
//对关闭通道进行监听
sync.channel().closeFuture().sync();
}finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
}
NettyServerHandler
package com.qf.netty.simple;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.Channel;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.channel.ChannelPipeline;
import io.netty.util.CharsetUtil;
import java.util.concurrent.TimeUnit;
public class NettyServerHandler extends ChannelInboundHandlerAdapter {
//读取数据实际(读取来自客户端的数据)
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
/* System.out.println("服务器读取的线程"+Thread.currentThread().getName());
System.out.println("server ctx"+ctx);
System.out.println("看看channel与pipele的关系");
Channel channel = ctx.channel();
ChannelPipeline pipeline = ctx.pipeline();
//将msg转成bytebuf
ByteBuf byteBuf= (ByteBuf) msg;
System.out.println("客户端所发送的数据:"+byteBuf.toString(CharsetUtil.UTF_8));
System.out.println("客户端的地址"+channel.remoteAddress());*/
//服务器写出数据
ctx.channel().eventLoop().execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10*1000);
ctx.writeAndFlush(Unpooled.copiedBuffer("hello,客户端 ~~~喵喵喵1",CharsetUtil.UTF_8));
}catch (Exception e){
e.printStackTrace();
}
}
});
ctx.channel().eventLoop().execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(20*1000);
ctx.writeAndFlush(Unpooled.copiedBuffer("hello,客户端 ~~~喵喵喵3",CharsetUtil.UTF_8));
}catch (Exception e){
e.printStackTrace();
}
}
});
ctx.channel().eventLoop().schedule(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(5*1000);
ctx.writeAndFlush(Unpooled.copiedBuffer("hello,客户端 ~~~喵喵喵4",CharsetUtil.UTF_8));
}catch (Exception e){
e.printStackTrace();
}
}
},5, TimeUnit.SECONDS);
System.out.println("go on...");
}
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
//服务器写出数据
ctx.writeAndFlush(Unpooled.copiedBuffer("hello,客户端 ~~~喵喵喵2",CharsetUtil.UTF_8));
}
/**
* 异常情况下的处理
*/
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
ctx.close();
}
}
NettyClient
package com.qf.netty.simple;
import io.netty.bootstrap.Bootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
public class NettyClient {
public static void main(String[] args) throws InterruptedException {
//客户端需要第一个事件循环组
NioEventLoopGroup group = new NioEventLoopGroup();
try{
//创建客户端启动
Bootstrap bootstrap = new Bootstrap();
//设置相关的参数
bootstrap.group(group)
.channel(NioSocketChannel.class)
.handler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel socketChannel) throws Exception {
socketChannel.pipeline().addLast(new NettyClientHandler());
}
});
//连接端口
ChannelFuture sync = bootstrap.connect("127.0.0.1", 6668).sync();
//对关闭通道进行监听
sync.channel().closeFuture().sync();
}finally {
group.shutdownGracefully();
}
}
}
NettyClientHandler
package com.qf.netty.simple;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.util.CharsetUtil;
public class NettyClientHandler extends ChannelInboundHandlerAdapter {
/**
* 通道就绪就会触发次方法
* @param ctx
* @throws Exception
*/
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
System.out.println("client:"+ctx);
ctx.writeAndFlush(Unpooled.copiedBuffer("hello,服务端《》汪汪汪~~~", CharsetUtil.UTF_8));
}
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
ByteBuf byteBuf= (ByteBuf) msg;
System.out.println("服务器回复的消息:"+byteBuf.toString(CharsetUtil.UTF_8));
System.out.println("服务器的地址:"+ctx.channel().remoteAddress());
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
cause.printStackTrace();
ctx.channel().close();
}
}
任务队列中的 Task 有 3 种典型使用场景
- 用户程序自定义的普通任务【举例说明】
- 用户自定义定时任务
- 非当前
Reactor线程调用Channel的各种方法
例如在推送系统的业务线程里面,根据用户的标识,找到对应的Channel引用,然后调用Write类方法向该用户推送消息,就会进入到这种场景。最终的Write会提交到任务队列中后被异步消费
前两种的代码举例:
package com.qf.netty.simple;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.Channel;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.channel.ChannelPipeline;
import io.netty.util.CharsetUtil;
import java.util.concurrent.TimeUnit;
public class NettyServerHandler extends ChannelInboundHandlerAdapter {
//读取数据实际(读取来自客户端的数据)
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
/* System.out.println("服务器读取的线程"+Thread.currentThread().getName());
System.out.println("server ctx"+ctx);
System.out.println("看看channel与pipele的关系");
Channel channel = ctx.channel();
ChannelPipeline pipeline = ctx.pipeline();
//将msg转成bytebuf
ByteBuf byteBuf= (ByteBuf) msg;
System.out.println("客户端所发送的数据:"+byteBuf.toString(CharsetUtil.UTF_8));
System.out.println("客户端的地址"+channel.remoteAddress());*/
//服务器写出数据
ctx.channel().eventLoop().execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10*1000);
ctx.writeAndFlush(Unpooled.copiedBuffer("hello,客户端 ~~~喵喵喵1",CharsetUtil.UTF_8));
}catch (Exception e){
e.printStackTrace();
}
}
});
ctx.channel().eventLoop().execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(20*1000);
ctx.writeAndFlush(Unpooled.copiedBuffer("hello,客户端 ~~~喵喵喵3",CharsetUtil.UTF_8));
}catch (Exception e){
e.printStackTrace();
}
}
});
ctx.channel().eventLoop().schedule(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(5*1000);
ctx.writeAndFlush(Unpooled.copiedBuffer("hello,客户端 ~~~喵喵喵4",CharsetUtil.UTF_8));
}catch (Exception e){
e.printStackTrace();
}
}
},5, TimeUnit.SECONDS);
System.out.println("go on...");
}
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
//服务器写出数据
ctx.writeAndFlush(Unpooled.copiedBuffer("hello,客户端 ~~~喵喵喵2",CharsetUtil.UTF_8));
}
/**
* 异常情况下的处理
*/
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
ctx.close();
}
}
方案再说明
Netty抽象出两组线程池,BossGroup专门负责接收客户端连接,WorkerGroup专门负责网络读写操作。NioEventLoop表示一个不断循环执行处理任务的线程,每个NioEventLoop都有一个Selector,用于监听绑定在其上的socket网络通道。NioEventLoop内部采用串行化设计,从消息的 读取->解码->处理->编码->发送,始终由IO线程NioEventLoop负责
-
NioEventLoopGroup下包含多个NioEventLoop -
每个
NioEventLoop中包含有一个Selector,一个taskQueue -
每个
NioEventLoop的Selector上可以注册监听多个NioChannel -
每个
NioChannel只会绑定在唯一的NioEventLoop上 -
每个
NioChannel都绑定有一个自己的ChannelPipeline
异步模型
基本介绍
- 异步的概念和同步相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的组件在完成后,通过状态、通知和回调来通知调用者。
Netty中的I/O操作是异步的,包括Bind、Write、Connect等操作会首先简单的返回一个ChannelFuture。- 调用者并不能立刻获得结果,而是通过
Future-Listener机制,用户可以方便的主动获取或者通过通知机制获得IO操作结果。 Netty的异步模型是建立在future和callback的之上的。callback就是回调。重点说Future,它的核心思想是:假设一个方法fun,计算过程可能非常耗时,等待fun返回显然不合适。那么可以在调用fun的时候,立马返回一个Future,后续可以通过Future去监控方法fun的处理过程(即:Future-Listener机制)
Future 说明
- 表示异步的执行结果,可以通过它提供的方法来检测执行是否完成,比如检索计算等等。
ChannelFuture是一个接口:public interface ChannelFuture extends Future<Void>我们可以添加监听器,当监听的事件发生时,就会通知到监听器。
工作原理示意图
下面第一张图就是管道,中间会经过多个handler
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2Iehxv8I-1658137645274)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0013.png?msec=1658136012614)]](https://img-blog.csdnimg.cn/62b3eff7f35d48f98deca01132856dfd.png)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pQAJD8jg-1658137645275)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0014.png?msec=1658136012618)]](https://img-blog.csdnimg.cn/a57055b458a44a2398287e1e8440ff33.png)
说明:
- 在使用
Netty进行编程时,拦截操作和转换出入站数据只需要您提供callback或利用future即可。这使得链式操作简单、高效,并有利于编写可重用的、通用的代码。 Netty框架的目标就是让你的业务逻辑从网络基础应用编码中分离出来、解脱出来。
Future-Listener 机制
这里看不懂的可以看笔者的并发系列-JUC部分
- 当
Future对象刚刚创建时,处于非完成状态,调用者可以通过返回的ChannelFuture来获取操作执行的状态,注册监听函数来执行完成后的操作。 - 常见有如下操作
- 通过
isDone方法来判断当前操作是否完成; - 通过
isSuccess方法来判断已完成的当前操作是否成功; - 通过
getCause方法来获取已完成的当前操作失败的原因; - 通过
isCancelled方法来判断已完成的当前操作是否被取消; - 通过
addListener方法来注册监听器,当操作已完成(isDone方法返回完成),将会通知指定的监听器;如果Future对象已完成,则通知指定的监听器
举例说明
演示:绑定端口是异步操作,当绑定操作处理完,将会调用相应的监听器处理逻辑
//绑定端口
ChannelFuture sync = bootstrap.bind(6668).sync();
//对我们的future对象进行监听,异步关注响应是否成功
sync.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture channelFuture) throws Exception {
if (sync.isSuccess()){
System.out.println("端口 6668 成功");
}else if (sync.isCancelled()){
System.out.println("端口 6668 失败");
}
}
});
快速入门实例 - HTTP服务
- 实例要求:使用
IDEA创建Netty项目 Netty服务器在6668端口监听,浏览器发出请求http://localhost:6668/- 服务器可以回复消息给客户端"Hello!我是服务器5",并对特定请求资源进行过滤。
- 目的:
Netty可以做Http服务开发,并且理解Handler实例和客户端及其请求的关系。 - 看老师代码演示
TestServer
package com.qf.netty.http;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelOption;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
public class TestServer {
public static void main(String[] args) throws InterruptedException {
//bossGroup指定的是一条线程
//workerGroup默认情况下是核心数*2
EventLoopGroup bossGroup=new NioEventLoopGroup(1);
EventLoopGroup workerGroup=new NioEventLoopGroup();
//创建服务端的启动对象,设置配置参数
ServerBootstrap bootstrap = new ServerBootstrap();
try {
bootstrap.group(bossGroup, workerGroup) //设置两个线程组
.channel(NioServerSocketChannel.class) //使用NioServerSocketChannel 作为数据通道
.option(ChannelOption.SO_BACKLOG,128) //设置队列的连接数量
.childOption(ChannelOption.SO_KEEPALIVE, true) //设置保持活动的连接数
.childHandler(new TestServerInitializer());
//绑定端口
ChannelFuture sync = bootstrap.bind(7788).sync();
//对关闭通道进行监听
sync.channel().closeFuture().sync();
}finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
}
TestServerInitializer
package com.qf.netty.http;
import com.qf.netty.simple.NettyServerHandler;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.socket.SocketChannel;
import io.netty.handler.codec.http.HttpServerCodec;
public class TestServerInitializer extends ChannelInitializer<SocketChannel> {
@Override
protected void initChannel(SocketChannel sc) throws Exception {
System.out.println("服务器的值:"+sc.hashCode());
//1. HttpServerCodec 是netty 提供的处理http的 编-解码器
ChannelPipeline pipeline = sc.pipeline();
pipeline.addLast("MyHttpServerCodec",new HttpServerCodec());
pipeline.addLast(new TestServerHandler());
}
}
TestServerHandler
package com.qf.netty.http;
import com.sun.jndi.toolkit.url.Uri;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.*;
import io.netty.handler.codec.http.*;
import io.netty.util.CharsetUtil;
import java.net.URI;
public class TestServerHandler extends SimpleChannelInboundHandler<HttpObject> {
@Override
protected void channelRead0(ChannelHandlerContext ctx, HttpObject msg) throws Exception {
System.out.println("dsdsads");
Channel channel = ctx.channel();
ChannelPipeline pipeline = ctx.pipeline();
ChannelHandler handler1 = ctx.handler();
System.out.println("channel=>"+channel+"pipeline=>"+pipeline+"handler=>"+handler1);
if (msg instanceof HttpRequest){
HttpRequest request= (HttpRequest) msg;
URI uri = new URI(request.uri());
if ("/favicon.ico".equals(uri.getPath())){
return;
}
System.out.println("pile hashcode:"+ctx.pipeline().hashCode()+"channel hashcode:"+ctx.channel().hashCode());
System.out.println("msg类型:"+msg.getClass());
System.out.println("remoteAddr:"+ctx.channel().remoteAddress());
//回显数据给浏览器
ByteBuf byteBuf = Unpooled.copiedBuffer("hello, 我是服务器", CharsetUtil.UTF_8);
FullHttpResponse response = new DefaultFullHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK, byteBuf);
response.headers().set(HttpHeaderNames.CONTENT_TYPE, "text/plain");
response.headers().set(HttpHeaderNames.CONTENT_LENGTH, byteBuf.readableBytes());
//将构建好 response返回
ctx.writeAndFlush(response);
}
}
}
Netty 核心模块组件
各种东西看不懂,可以先看第三话,第三话我自认为用通俗的语言讲的还算清楚。
Bootstrap、ServerBootstrap
Bootstrap意思是引导,一个Netty应用通常由一个Bootstrap开始,主要作用是配置整个Netty程序,串联各个组件,Netty中Bootstrap类是客户端程序的启动引导类,ServerBootstrap是服务端启动引导类。- 常见的方法有
public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup),该方法用于服务器端,用来设置两个EventLooppublic B group(EventLoopGroup group),该方法用于客户端,用来设置一个EventLooppublic B channel(Class<? extends C> channelClass),该方法用来设置一个服务器端的通道实现public <T> B option(ChannelOption<T> option, T value),用来给ServerChannel添加配置public <T> ServerBootstrap childOption(ChannelOption<T> childOption, T value),用来给接收到的通道添加配置public ServerBootstrap childHandler(ChannelHandler childHandler),该方法用来设置业务处理类(自定义的handler)public ChannelFuture bind(int inetPort),该方法用于服务器端,用来设置占用的端口号public ChannelFuture connect(String inetHost, int inetPort),该方法用于客户端,用来连接服务器端
Future、ChannelFuture
Netty 中所有的 IO 操作都是异步的,不能立刻得知消息是否被正确处理。但是可以过一会等它执行完成或者直接注册一个监听,具体的实现就是通过 Future 和 ChannelFutures,他们可以注册一个监听,当操作执行成功或失败时监听会自动触发注册的监听事件
常见的方法有
Channel channel(),返回当前正在进行IO操作的通道ChannelFuture sync(),等待异步操作执行完毕
Channel
Netty网络通信的组件,能够用于执行网络I/O操作。- 通过
Channel可获得当前网络连接的通道的状态 - 通过
Channel可获得网络连接的配置参数(例如接收缓冲区大小) Channel提供异步的网络I/O操作(如建立连接,读写,绑定端口),异步调用意味着任何I/O调用都将立即返回,并且不保证在调用结束时所请求的I/O操作已完成- 调用立即返回一个
ChannelFuture实例,通过注册监听器到ChannelFuture上,可以I/O操作成功、失败或取消时回调通知调用方 - 支持关联
I/O操作与对应的处理程序 - 不同协议、不同的阻塞类型的连接都有不同的
Channel类型与之对应,常用的Channel类型:
NioSocketChannel,异步的客户端TCPSocket连接。NioServerSocketChannel,异步的服务器端TCPSocket连接。NioDatagramChannel,异步的UDP连接。NioSctpChannel,异步的客户端Sctp连接。NioSctpServerChannel,异步的Sctp服务器端连接,这些通道涵盖了UDP和TCP网络IO以及文件IO。
Selector
Netty基于Selector对象实现I/O多路复用,通过Selector一个线程可以监听多个连接的Channel事件。- 当向一个
Selector中注册Channel后,Selector内部的机制就可以自动不断地查询(Select)这些注册的Channel是否有已就绪的I/O事件(例如可读,可写,网络连接完成等),这样程序就可以很简单地使用一个线程高效地管理多个Channel
ChannelHandler 及其实现类
ChannelHandler是一个接口,处理I/O事件或拦截I/O操作,并将其转发到其ChannelPipeline(业务处理链)中的下一个处理程序。ChannelHandler本身并没有提供很多方法,因为这个接口有许多的方法需要实现,方便使用期间,可以继承它的子类ChannelHandler及其实现类一览图(后)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cEZRJqKN-1658137945155)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0015.png?msec=1658136012619)]](https://img-blog.csdnimg.cn/21cb9f04b5ed41bcb82561baac4dc42a.png)
- 我们经常需要自定义一个
Handler类去继承ChannelInboundHandlerAdapter,然后通过重写相应方法实现业务逻辑,我们接下来看看一般都需要重写哪些方法
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZdoJ2i0w-1658137945155)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0016.png?msec=1658136012622)]](https://img-blog.csdnimg.cn/1e908243e42f499ab9f9a2e4237961f5.png)
Pipeline 和 ChannelPipeline
ChannelPipeline 是一个重点:
ChannelPipeline是一个Handler的集合,它负责处理和拦截inbound或者outbound的事件和操作,相当于一个贯穿Netty的链。(也可以这样理解:ChannelPipeline是保存ChannelHandler的List,用于处理或拦截Channel的入站事件和出站操作)ChannelPipeline实现了一种高级形式的拦截过滤器模式,使用户可以完全控制事件的处理方式,以及Channel中各个的ChannelHandler如何相互交互- 在
Netty中每个Channel都有且仅有一个ChannelPipeline与之对应,它们的组成关系如下
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iuOt0Kt9-1658137945156)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0017.png?msec=1658136012627)]](https://img-blog.csdnimg.cn/6e281ee34f45485dbd6da08fade7162c.png)
- 常用方法
ChannelPipeline addFirst(ChannelHandler... handlers),把一个业务处理类(handler)添加到链中的第一个位置ChannelPipeline addLast(ChannelHandler... handlers),把一个业务处理类(handler)添加到链中的最后一个位置
想要更清楚的了解pipeline,可以对之前的代码进行debug,看一下pipeline里究竟有什么东西。
从head看一下debug
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wlhnxcTW-1658137945156)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0018.jpg?msec=1658136012695)]](https://img-blog.csdnimg.cn/ae47172e727349318b043372d239d292.jpeg)
TestServerInitializer和HttpServerCodec这些东西本身也是handler- 一般来说事件从客户端往服务器走我们称为出站,反之则是入站。
ChannelHandlerContext
-
保存
Channel相关的所有上下文信息,同时关联一个ChannelHandler对象 -
即
ChannelHandlerContext中包含一个具体的事件处理器ChannelHandler,同时ChannelHandlerContext中也绑定了对应的pipeline和Channel的信息,方便对ChannelHandler进行调用。
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7gwDK8N7-1658137945158)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0020.png?msec=1658136012612)]]()
-
常用方法
ChannelFuture close(),关闭通道ChannelOutboundInvoker flush(),刷新ChannelFuture writeAndFlush(Object msg),将数据写到ChannelPipeline中当前ChannelHandler的下一个ChannelHandler开始处理(出站)

ChannelOption
Netty在创建Channel实例后,一般都需要设置ChannelOption参数。ChannelOption参数如下:

EventLoopGroup 和其实现类 NioEventLoopGroup
EventLoopGroup是一组EventLoop的抽象,Netty为了更好的利用多核CPU资源,一般会有多个EventLoop同时工作,每个EventLoop维护着一个Selector实例。EventLoopGroup提供next接口,可以从组里面按照一定规则获取其中一个EventLoop来处理任务。在Netty服务器端编程中,我们一般都需要提供两个EventLoopGroup,例如:BossEventLoopGroup和WorkerEventLoopGroup。- 通常一个服务端口即一个
ServerSocketChannel对应一个Selector和一个EventLoop线程。BossEventLoop负责接收客户端的连接并将SocketChannel交给WorkerEventLoopGroup来进行IO处理,如下图所示
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OyZBw5DA-1658137945160)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0022.png?msec=1658136012620)]](https://img-blog.csdnimg.cn/fc82e1dcc07541d9a94cc3beccc07e8c.png)
- 常用方法
public NioEventLoopGroup(),构造方法
public Future<?> shutdownGracefully(),断开连接,关闭线程
Unpooled 类
Netty提供一个专门用来操作缓冲区(即Netty的数据容器)的工具类- 常用方法如下所示
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NAdKEXDG-1658137945161)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0023.png?msec=1658136012612)]](https://img-blog.csdnimg.cn/d20ee1b803b74ae8a782c9d5e1b61b46.png)
- 举例说明
Unpooled获取Netty的数据容器ByteBuf的基本使用
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-E2Tm6lO8-1658137945161)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0024.png?msec=1658136012612)]](https://img-blog.csdnimg.cn/f2f8331dac254e47955c2eafdd3e2b78.png)
案例 1
package com.qf.netty.buf;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
public class NettyBuf01 {
public static void main(String[] args) {
ByteBuf buffer = Unpooled.buffer(10);
for (int i = 0; i < 10; i++) {
buffer.writeByte(i);
}
for (int i = 0; i < 10; i++) {
System.out.println(buffer.getByte(i));
}
for (int i = 0; i < 10; i++) {
System.out.println(buffer.readByte());
}
System.out.println("capacity:"+buffer.capacity());
int i = buffer.maxCapacity();
int i1 = buffer.maxWritableBytes();
System.out.println("i="+i+"i1="+i1);
}
}
案例 2
package com.qf.netty.buf;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import java.nio.charset.Charset;
public class NettyBuf02 {
public static void main(String[] args) {
ByteBuf byteBuf = Unpooled.copiedBuffer("hello,world!", Charset.forName("utf-8"));
//是否有数据
if (byteBuf.hasArray()){
byte[] array = byteBuf.array();
System.out.println(new String(array,Charset.forName("utf-8")));
System.out.println("bytebuf"+byteBuf);
System.out.println(byteBuf.arrayOffset());
System.out.println(byteBuf.readerIndex());
System.out.println(byteBuf.writerIndex());
System.out.println(byteBuf.capacity());
System.out.println(byteBuf.readByte());
System.out.println("可读的长度:"+byteBuf.readableBytes());
for (int i = 0; i <byteBuf.readableBytes() ; i++) {
System.out.println(byteBuf.getByte(i));
}
System.out.println(byteBuf.getCharSequence(0,3,Charset.forName("utf-8")));
System.out.println(byteBuf.getCharSequence(4,7,Charset.forName("utf-8")));
}
}
}
Netty 应用实例-群聊系统
实例要求:
- 编写一个
Netty群聊系统,实现服务器端和客户端之间的数据简单通讯(非阻塞) - 实现多人群聊
- 服务器端:可以监测用户上线,离线,并实现消息转发功能
- 客户端:通过
channel可以无阻塞发送消息给其它所有用户,同时可以接受其它用户发送的消息(有服务器转发得到) - 目的:进一步理解
Netty非阻塞网络编程机制
![在这里插入图片描述]()
代码如下:
NettyGroupChatServer
package com.qf.netty.group;
import com.qf.netty.simple.NettyServerHandler;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.codec.string.StringDecoder;
import io.netty.handler.codec.string.StringEncoder;
public class NettyGroupChatServer {
private int port;
public NettyGroupChatServer(int port){
this.port=port;
}
public void run() throws InterruptedException {
//bossGroup指定的是一条线程
//workerGroup默认情况下是核心数*2
EventLoopGroup bossGroup=new NioEventLoopGroup(1);
EventLoopGroup workerGroup=new NioEventLoopGroup();
//创建服务端的启动对象,设置配置参数
ServerBootstrap bootstrap = new ServerBootstrap();
try {
bootstrap.group(bossGroup, workerGroup) //设置两个线程组
.channel(NioServerSocketChannel.class) //使用NioServerSocketChannel 作为数据通道
.option(ChannelOption.SO_BACKLOG,128) //设置队列的连接数量
.childOption(ChannelOption.SO_KEEPALIVE, true) //设置保持活动的连接数
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel sc) throws Exception {
ChannelPipeline pipeline = sc.pipeline();
pipeline.addLast("decoder",new StringDecoder());
pipeline.addLast("encoder",new StringEncoder());
pipeline.addLast(new GroupChatServerHandler());
}
});
//绑定端口
ChannelFuture sync = bootstrap.bind(port).sync();
//对关闭通道进行监听
sync.channel().closeFuture().sync();
System.out.println("netty群聊服务器启动ok....");
}finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
public static void main(String[] args) throws InterruptedException {
NettyGroupChatServer nettyGroupChatServer = new NettyGroupChatServer(7888);
nettyGroupChatServer.run();
}
}
GroupChatServerHandler
package com.qf.netty.group;
import io.netty.channel.Channel;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;
import io.netty.channel.group.ChannelGroup;
import io.netty.channel.group.DefaultChannelGroup;
import io.netty.util.concurrent.GlobalEventExecutor;
import java.text.SimpleDateFormat;
import java.util.Date;
public class GroupChatServerHandler extends SimpleChannelInboundHandler<String> {
private static ChannelGroup group=new DefaultChannelGroup(GlobalEventExecutor.INSTANCE);
SimpleDateFormat simpleDateFormat=new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
Channel channel = ctx.channel();
channel.writeAndFlush("【客户端】"+channel.remoteAddress()+"已加入聊天"+simpleDateFormat.format(new Date()));
group.add(channel);
}
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
Channel channel = ctx.channel();
System.out.println("【客户端】"+channel.remoteAddress()+"上线");
}
@Override
public void channelInactive(ChannelHandlerContext ctx) throws Exception {
Channel channel = ctx.channel();
System.out.println("【客户端】"+channel.remoteAddress()+"离线");
}
@Override
protected void channelRead0(ChannelHandlerContext ctx, String s) throws Exception {
Channel channel = ctx.channel();
System.out.println("【客户端】"+channel.remoteAddress()+"发送消息:"+s);
group.forEach(ch->{
if (ch!=channel){
ch.writeAndFlush("【客户端】"+channel.remoteAddress()+"发送消息:"+s);
}else{
channel.writeAndFlush("【自己】"+channel.remoteAddress()+"发送消息:"+s);
}
});
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
Channel channel = ctx.channel();
System.out.println("【客户端】"+channel.remoteAddress()+"有异常");
}
}
NettyGroupChatClient
package com.qf.netty.group;
import com.qf.netty.simple.NettyClientHandler;
import io.netty.bootstrap.Bootstrap;
import io.netty.channel.Channel;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.string.StringDecoder;
import io.netty.handler.codec.string.StringEncoder;
import java.nio.channels.NonReadableChannelException;
import java.util.Scanner;
public class NettyGroupChatClient {
private String addr;
private int port;
public NettyGroupChatClient(String addr,int port){
this.port=port;
this.addr=addr;
}
public void run() throws InterruptedException {
//客户端需要第一个事件循环组
NioEventLoopGroup group = new NioEventLoopGroup();
try{
//创建客户端启动
Bootstrap bootstrap = new Bootstrap();
//设置相关的参数
bootstrap.group(group)
.channel(NioSocketChannel.class)
.handler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel socketChannel) throws Exception {
ChannelPipeline pipeline = socketChannel.pipeline();
pipeline.addLast("decoder",new StringDecoder());
pipeline.addLast("encoder",new StringEncoder());
pipeline.addLast(new NettyGroupChatClientHandler());
}
});
//连接端口
ChannelFuture sync = bootstrap.connect(addr, port).sync();
Channel channel = sync.channel();
Scanner scanner = new Scanner(System.in);
while(scanner.hasNextLine()){
String s = scanner.nextLine();
channel.writeAndFlush(s);
}
//对关闭通道进行监听
sync.channel().closeFuture().sync();
}finally {
group.shutdownGracefully();
}
}
public static void main(String[] args) throws InterruptedException {
NettyGroupChatClient chatClient=new NettyGroupChatClient("127.0.0.1",7888);
chatClient.run();
}
}
NettyGroupChatClientHandler
package com.qf.netty.group;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;
public class NettyGroupChatClientHandler extends SimpleChannelInboundHandler<String> {
@Override
protected void channelRead0(ChannelHandlerContext ctx, String s) throws Exception {
System.out.println(s.trim());
}
}
Netty 心跳检测机制案例
实例要求:
- 编写一个
Netty心跳检测机制案例,当服务器超过3秒没有读时,就提示读空闲 - 当服务器超过
5秒没有写操作时,就提示写空闲 - 实现当服务器超过
7秒没有读或者写操作时,就提示读写空闲 - 代码如下:
HeartBeatServer
package com.qf.netty.heartbeat;
import com.qf.netty.simple.NettyServerHandler;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.logging.LogLevel;
import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.IdleStateHandler;
import java.util.concurrent.TimeUnit;
public class HeartBeatServer {
public static void main(String[] args) throws InterruptedException {
//创建boss group 和worker group
//DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt("io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
//bossGroup指定的是一条线程
//workerGroup默认情况下是核心数*2
EventLoopGroup bossGroup=new NioEventLoopGroup(1);
EventLoopGroup workerGroup=new NioEventLoopGroup();
//创建服务端的启动对象,设置配置参数
ServerBootstrap bootstrap = new ServerBootstrap();
//使用连式编程来进行设置
try {
bootstrap.group(bossGroup, workerGroup) //设置两个线程组
.channel(NioServerSocketChannel.class) //使用NioServerSocketChannel 作为数据通道
.handler(new LoggingHandler(LogLevel.INFO))
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel sc) throws Exception {
System.out.println("服务器的值:"+sc.hashCode());
ChannelPipeline pipeline = sc.pipeline();
pipeline.addLast(new IdleStateHandler(50000,7000,10, TimeUnit.SECONDS));
pipeline.addLast(new HeartBeatHandler());
}
});
System.out.println("服务器已经准备好....");
//绑定端口
ChannelFuture sync = bootstrap.bind(7000).sync();
//对我们的future对象进行监听,异步关注响应是否成功
//对关闭通道进行监听
sync.channel().closeFuture().sync();
}finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
}
HeartBeatHandler
package com.qf.netty.heartbeat;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandler;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.handler.timeout.IdleStateEvent;
import io.netty.handler.timeout.IdleStateHandler;
import static io.netty.handler.timeout.IdleState.*;
public class HeartBeatHandler extends ChannelInboundHandlerAdapter {
@Override
public void userEventTriggered(ChannelHandlerContext ctx, Object evt) throws Exception {
System.out.println("ctx.changnell:"+ctx.channel().hashCode());
if (evt instanceof IdleStateEvent){
IdleStateEvent event= (IdleStateEvent) evt;
String eventType=null;
switch (event.state()){
case ALL_IDLE:
System.out.println(ALL_IDLE);
break;
case READER_IDLE:
System.out.println(READER_IDLE);
break;
case WRITER_IDLE:
System.out.println(WRITER_IDLE);
break;
}
System.out.println(ctx.channel().remoteAddress()+"超时时间..."+event.state());
System.out.println("服务做相应的处理");
}
ctx.channel().close();
}
}
Netty 通过 WebSocket 编程实现服务器和客户端长连接
实例要求:
Http协议是无状态的,浏览器和服务器间的请求响应一次,下一次会重新创建连接。- 要求:实现基于
WebSocket的长连接的全双工的交互 - 改变
Http协议多次请求的约束,实现长连接了,服务器可以发送消息给浏览器 - 客户端浏览器和服务器端会相互感知,比如服务器关闭了,浏览器会感知,同样浏览器关闭了,服务器会感知
- 运行界面
![在这里插入图片描述]()
![在这里插入图片描述]()
NettyWebSocketServer
package com.qf.netty.websocket;
import com.qf.netty.websocket.NettyWebSocketHandler;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.codec.http.HttpObjectAggregator;
import io.netty.handler.codec.http.HttpServerCodec;
import io.netty.handler.codec.http.websocketx.WebSocketServerProtocolHandler;
import io.netty.handler.logging.LogLevel;
import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.stream.ChunkedWriteHandler;
import io.netty.handler.timeout.IdleStateHandler;
import java.util.concurrent.TimeUnit;
public class NettyWebSocketServer {
public static void main(String[] args) throws Exception{
//创建两个线程组
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup(); //8个NioEventLoop
try {
ServerBootstrap serverBootstrap = new ServerBootstrap();
serverBootstrap.group(bossGroup, workerGroup);
serverBootstrap.channel(NioServerSocketChannel.class);
serverBootstrap.handler(new LoggingHandler(LogLevel.INFO));
serverBootstrap.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ChannelPipeline pipeline = ch.pipeline();
//因为基于http协议,使用http的编码和解码器
pipeline.addLast(new HttpServerCodec());
//http是以块方式写,添加ChunkedWriteHandler处理器
pipeline.addLast(new ChunkedWriteHandler());
/*
说明
1. http数据在传输过程中是分段, HttpObjectAggregator ,就是可以将多个段聚合
2. 这就就是为什么,当浏览器发送大量数据时,就会发出多次http请求
*/
pipeline.addLast(new HttpObjectAggregator(8192));
/*
说明
1. 对应websocket ,它的数据是以 帧(frame) 形式传递
2. 可以看到WebSocketFrame 下面有六个子类
3. 浏览器请求时 ws://localhost:7000/hello 表示请求的uri
4. WebSocketServerProtocolHandler 核心功能是将 http协议升级为 ws协议 , 保持长连接
5. 是通过一个 状态码 101
*/
pipeline.addLast(new WebSocketServerProtocolHandler("/hello"));
//自定义的handler ,处理业务逻辑
pipeline.addLast(new NettyWebSocketHandler());
}
});
//启动服务器
ChannelFuture channelFuture = serverBootstrap.bind(7000).sync();
channelFuture.channel().closeFuture().sync();
}finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
}
NettyWebSocketHandler
package com.qf.netty.websocket;
import io.netty.channel.Channel;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.channel.SimpleChannelInboundHandler;
import io.netty.handler.codec.http.websocketx.TextWebSocketFrame;
import java.time.LocalDateTime;
public class NettyWebSocketHandler extends SimpleChannelInboundHandler<TextWebSocketFrame> {
@Override
protected void channelRead0(ChannelHandlerContext ctx, TextWebSocketFrame textWebSocketFrame) throws Exception {
Channel channel = ctx.channel();
System.out.println("【客户端】"+channel.remoteAddress()+textWebSocketFrame.text());
//回复消息
ctx.channel().writeAndFlush(new TextWebSocketFrame("服务器时间" + LocalDateTime.now() + " " + textWebSocketFrame.text()));
}
@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
Channel channel = ctx.channel();
System.out.println("【客户端】"+channel.remoteAddress()+"在线加入");
}
@Override
public void handlerRemoved(ChannelHandlerContext ctx) throws Exception {
Channel channel = ctx.channel();
System.out.println("【客户端】"+channel.remoteAddress()+"离线");
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
Channel channel = ctx.channel();
System.out.println("【客户端】"+channel.remoteAddress()+"连接异常");
}
}
网页客户端
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Title</title>
</head>
<body>
<script>
var socket;
//判断当前浏览器是否支持websocket
if(window.WebSocket) {
//go on
socket = new WebSocket("ws://localhost:7000/hello");
//相当于channelReado, ev 收到服务器端回送的消息
socket.onmessage = function (ev) {
var rt = document.getElementById("responseText");
rt.value = rt.value + "\n" + ev.data;
}
//相当于连接开启(感知到连接开启)
socket.onopen = function (ev) {
var rt = document.getElementById("responseText");
rt.value = "连接开启了.."
}
//相当于连接关闭(感知到连接关闭)
socket.onclose = function (ev) {
var rt = document.getElementById("responseText");
rt.value = rt.value + "\n" + "连接关闭了.."
}
} else {
alert("当前浏览器不支持websocket")
}
//发送消息到服务器
function send(message) {
if(!window.socket) { //先判断socket是否创建好
return;
}
if(socket.readyState == WebSocket.OPEN) {
//通过socket 发送消息
socket.send(message)
} else {
alert("连接没有开启");
}
}
</script>
<form onsubmit="return false">
<textarea name="message" style="height: 300px; width: 300px"></textarea>
<input type="button" value="发生消息" onclick="send(this.form.message.value)">
<textarea id="responseText" style="height: 300px; width: 300px"></textarea>
<input type="button" value="清空内容" onclick="document.getElementById('responseText').value=''">
</form>
</body>
</html>
可以看到并不是发一次数据,连接就关闭了,而是可以继续发送。


![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7gwDK8N7-1658137945158)(file://C:\Users\Administrator\Downloads\netty\image\introduction\chapter_002\0020.png?msec=1658136012612)]](https://img-blog.csdnimg.cn/7328f4f3d47c4ea090a2497000f3e5fb.jpeg)



浙公网安备 33010602011771号