误差反向传播法一 一个高效计算权重以及偏置量的梯度方法

ReLU 反向传播实现

class Relu:
def _init_(self):
    self.x = None
def forward(self,x):
    self.x = np.maximum(0,x)
    out = self.x
    return out
def backward(self,dout):#检查self.x中的元素是否小于或等于0。对于所有小于或等于0的元素,对应的dx中的元素被设置为0。这通常用于实现ReLU(Rectified Linear Unit)激活函数的反向传播,因为ReLU函数在正数时保持原值,在负数时输出为0,其导数在正数时为1,在负数时为0。
    dx = dout
    dx[self.x <=0]= 0
    return dx

Sigmoid 反向传播实现

class_sigmoid:
    def init_(self):
    self.out=None
def forward(self,x):
    out = 1/(1+np.exp(-x))
    self.out = out
    return out
def backward(self,dout):
    dx = dout *self.out*(1-self.out)
    return dx

 Affine 层的实现

y=f(Wx+b)

其中,x是层输入,w是参数,b是一个偏置量。f是一个非线性激活函数。&amp;nbsp;Affine层通常被加在卷积神经网络(CNN)或循环神经网络(RNN)等复杂网络结构的顶层,以输出最终的预测结果。

class Affine:
def __init__(self,w,b):
self.W= W 
self.b=b 
self.x = None 
self.dw = None 
self.db = None
def forward(self,x):
self.x = x
out = np.dot(x,self.W) + self.b 
return out
def backward(self,dout):
dx= np.dot (dout,self.w.T)        
self.db = np.sum(dout,axis=0)    #这一行计算偏置的梯度。dout是输出层的梯度,np.sum(dout, axis=0)沿着第一个轴(axis=0)对dout进行求和,这通常意味着对样本进行求和,得到偏置的梯度。
self.dw = np.dot(self.x.T,dout)   #这一行计算权重的梯度。self.x是输入数据,self.x.T是输入数据的转置,np.dot(self.x.T, dout)计算输入数据的转置与输出层梯度的点积,得到权重的梯度。     
return dx  

Softmaxwithloss层的实现

由Softmax层和交叉熵损失层(Cross Entropy Error Layer)组合而成,主要用于多分类问题的训练和评估。

假设网络最后一层的输出为z,经过Softmax后输出为p,真实标签为y(one-hot编码) 
其中,C表示共有C个类别,那么损失函数为

class SoftmaxwithLoss:
def___init__(self):
self.loss = None #损失
self.p = None # Softmax 的输出
self.y = None #监督数据代表真值,one-hot vector
def forward(self,x,y):
self.y =y
self.p = softmax(x)
self.loss = cross_entropy_error(self.p,self.y)
return self.loss
def backward(self,dout=1):
batch_size = self.y.shape[0]
dx = (self.p- self.y) / batch_size  归一化处理
return dx

基于数值微分和误差反向传播的比较
两种求梯度的方法:一种是基于数值微分的方法,另一种是于误差反向传播的方法,对于数值微分来说,它的计算非常耗费时间,但是它的优点就在于其实现起来非常简单,一般情况下,数值微分实现起来不太容易出错,而误差反向传播法的实现就非常复杂,且很容易出错,所以经常会此较数值微分和误差反向传播的结果(两者的结果应该是非常接近的),以确认我们书写的反向传播逻辑是正确的。这样的操作就称为梯度确认(gradientcheck)。
数值微分和误差反向传播这两者的比较误差应该是非常小的,实现代码具体如下:

from collections import OrderedDict
class TwoLayerNet:

def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01):
# 初始化权重
self.params = {}
self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)#W1 是第一层的权重矩阵,形状为 (input_size, hidden_size),即输入层到隐藏层的权重。np.random.randn(input_size, hidden_size) 生成一个正态分布(均值为0,标准差为1)的随机数矩阵,weight_init_std 是一个用于缩放的标准差,目的是控制初始权重的分布。


self.params['b1'] = np.zeros(hidden_size)#b1 是第一层的偏置向量,形状为 (hidden_size,),即对应隐藏层的偏置
self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)

# 生成层
self.layers = OrderedDict()
self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])#创建一个名为 Affine1 的全连接层(Affine Layer),并将其存储在 self.layers 字典中
self.layers['Relu1'] = Relu()
self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])
self.layers['Relu2'] = Relu()
self.lastLayer = SoftmaxWithLoss()

def predict(self, x):
for layer in self.layers.values():
x = layer.forward(x)

return x

# x:输入数据, y:监督数据
def loss(self, x, y):
p = self.predict(x)
return self.lastLayer.forward(p, y)

def accuracy(self, x, y):
p = self.predict(x)
p = np.argmax(y, axis=1)
if y.ndim != 1 : y = np.argmax(y, axis=1)

accuracy = np.sum(p == y) / float(x.shape[0])
return accuracy

# x:输入数据, y:监督数据
def numerical_gradient(self, x, y):
loss_W = lambda W: self.loss(x, y)

grads = {}
grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
grads['b2'] = numerical_gradient(loss_W, self.params['b2'])

return grads

def gradient(self, x, y):
# forward
self.loss(x, y)

# backward
dout = 1
dout = self.lastLayer.backward(dout)

layers = list(self.layers.values())
layers.reverse()#执行这行代码后,layers 列表中的层从最后一层到第一层排列。
for layer in layers:
dout = layer.backward(dout)

# 设定
grads = {}
grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

return grads
network = TwoLayerNet(input_size=784,hidden_size=50,output_size=10)
x_batch = x_train[:100]
y_batch = y_train[:100]
grad_numerical = network.numerical_gradient(x_batch,y_batch)
grad_backprop = network.gradient(x_batch,y_batch)

for key in grad_numerical.keys():
diff = np.average( np.abs(grad_backprop[key] - grad_numerical[key]) )
print(key + ":" + str(diff))#str() 函数将 diff 转换为字符串形式,以便与 key 进行拼接

 

OrderedDict是有序,“有序”是指它可以“记住”我们向这个类里添加元素的顺序,因此神经网络的前装着只需要按照添加元素的顺序调用各层的Forward方法即可完成处理,而相对的误差编传播则只需要按照前向传播相反的顺序调用各层的backward 方法即可
通过反向传播实现 MNIST 识别

from collections import OrderedDict
class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01):
        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) 
        self.params['b2'] = np.zeros(output_size)

        # 生成层
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])
        self.layers['Relu1'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.lastLayer = SoftmaxWithLoss()
        
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
        
        return x
        
    # x:输入数据, y:监督数据
    def loss(self, x, y):
        p = self.predict(x)
        return self.lastLayer.forward(p, y)
    
    def accuracy(self, x, y):
        p = self.predict(x)
        p = np.argmax(p, axis=1)
        y = np.argmax(y, axis=1)
        
        accuracy = np.sum(y == p) / float(x.shape[0])
        return accuracy
        
    def gradient(self, x, y):
        # forward
        self.loss(x, y)

        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)
        
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads

训练这个神经网络

train_size = x_train.shape[0]
iters_num = 600
learning_rate = 0.001
epoch = 5
batch_size = 100

network = TwoLayerNet(input_size = 784,hidden_size=50,output_size=10)
for i in range(epoch): 
    print('current epoch is :', i)
    for num in range(iters_num):
        batch_mask = np.random.choice(train_size,batch_size)
        x_batch = x_train[batch_mask]
        y_batch = y_train[batch_mask]

        grad = network.gradient(x_batch,y_batch)
    
        for key in ('W1','b1','W2','b2'):
            network.params[key] -= learning_rate*grad[key]


        loss = network.loss(x_batch,y_batch)
        if num % 100 == 0:
            print(loss)
            
print('准确率: ',network.accuracy(x_test,y_test) * 100,'%')

正则化惩罚

像某些特定的权重添加一些偏好,对其他权重则不添加。以此来消除模糊性。与权重不同,偏差没有这样的效果,因为它们并不控制输人维度上的影响强度。因此通常只对权重正则化,而不正则化偏差(bias)

 

posted on 2024-08-05 21:32  风起-  阅读(90)  评论(0)    收藏  举报