会员
众包
新闻
博问
闪存
赞助商
HarmonyOS
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
下路派出所
博客园
首页
新随笔
联系
订阅
管理
2018年1月16日
深度学习(九) 深度学习最全优化方法总结比较(SGD,Momentum,Nesterov Momentum,Adagrad,Adadelta,RMSprop,Adam)
摘要: 前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小。 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理。 SGD SGD指stochastic gradient descent,即随机梯度下降。是梯度下降的batch版本。 对于训
阅读全文
posted @ 2018-01-16 22:08 下路派出所
阅读(17344)
评论(0)
推荐(0)
公告