回文自动机学习笔记

前言

刚学完manacher就来学回文自动机……

感觉好像(板子)也不是很难(背)

前置知识:Manacher(也不一定非要因为和这个没啥关系),知道自动机是个啥以及怎么建

简述

回文树和回文自动机指的是同一个东西

是由某西伯利亚人于2014夏发明的

这东西主要是用于计数,计算回文串的个数以及种类啥的

建树

图我就不放了(太乱了放了也看不懂),要看图的话可以去这位大神的blog里看一下->这里

不过个人感觉看文字描述应该就会了……吧……

首先,回文树里有两棵树,分别记录长度为奇数和偶数的回文串

每个节点代表一个回文串,记录转移$x$,表示如果在这个回文串前后都加上字符$x$形成的回文串是子节点的子串

然后每一个节点记录一个fail指针,指向这个回文串的最长后缀回文串

然后我们考虑建树,假设已经建好了串$s[1...i-1]$,要把字符$s[i]$插入这棵树

那么每一次只会把$s[1...i]$的最长后缀回文串加进树里。

证明:(抄这里的)

我们设后缀回文$i$是最长后缀回文$k$的子串,那么$i$肯定关于$k$的回文中心有一个对称串$j$,由于$k$本身是对称的,所以$j$和$i$是相同的,那么$j$已经被加入到回文树中,所以$i$不必再加入

然后就没问题了。我们设最长回文后缀为$k$,加入字符$c$,那么如果可以,最长回文后缀会变成$ckc$

然而如果$k$之前的字母不是$c$怎么办?这个时候$fail$指针就派上用场了。我们用$fail$维护每一个节点的最长后缀回文,如果$k$不行,我们看看$k$的最长后缀回文是否可行(就是看$k$的最长后缀回文的前一个字母是否等于$c$),然后就这样一直跳$fail$指针直到找到为止(如果一直没有找到会跳到根节点,下面再说)

然后如何维护$fail$呢?我们只要找到了当前节点的最长回文后缀然后记录一下就就好了

然后字符要接在之前的串的后面,记录一下$last$表示上一个串的节点

然后注意特殊处理两个根节点,$0$代表长度为偶数的后缀的根,$1$代表长度为$1$的后缀的根,我们令$fail[0]$指向$1$,$len[1]=-1$,然后令$s[0]=-1$(或任何一个不在原串中出现的字符)($len$代表这个节点的串长)

就比如说如果跳的时候一直找不到回文怎么办?这个时候这个节点就单独形成一个回文串,那么我们在判断$s[i-len[x]-1]==s[i]$的时候,因为$len[1]=-1$,所以必定会停止,那么就不用担心会无限跳下去了

然后来几道题吧

洛谷P3649 [APIO2014]回文串

这就是一个板子,顺便记录一下出现次数就好了

然后该有的注解都会写在代码里

 1 //minamoto
 2 #include<cstdio>
 3 #include<cstring>
 4 #define ll long long
 5 template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
 6 const int N=3e5+5;
 7 char s[N];
 8 int n,p,q,fail[N],cnt[N],len[N],tot,last,ch[N][26];
 9 ll ans;
10 inline int newnode(int x){
11     //建立一个新节点,长度为x 
12     len[++tot]=x;return tot;
13 }
14 inline int getfail(int x,int n){
15     //跳fail指针知道找到后缀回文为止 
16     while(s[n-len[x]-1]!=s[n]) x=fail[x];
17     return x;
18 }
19 int main(){
20     scanf("%s",s+1);
21     //一堆乱七八糟的初始化 
22     s[0]=-1,fail[0]=1,last=0;
23     len[0]=0,len[1]=-1,tot=1;
24     for(int i=1;s[i];++i){
25         s[i]-='a';
26         //找到可以回文的位置 
27         p=getfail(last,i);
28         if(!ch[p][s[i]]){
29             //如果有了转移就不用建了,否则要新建 
30             //前后都加上新字符,所以新回文串长度要加2 
31             q=newnode(len[p]+2);
32             //因为fail指向的得是原串的严格后缀,所以要从p的fail开始找起 
33             fail[q]=ch[getfail(fail[p],i)][s[i]]; 
34             //记录转移 
35             ch[p][s[i]]=q;
36         }
37         ++cnt[last=ch[p][s[i]]];
38     }
39     for(int i=tot;i;--i)
40     cnt[fail[i]]+=cnt[i],cmax(ans,1ll*cnt[i]*len[i]);
41     printf("%lld\n",ans);
42     return 0;
43 }

洛谷P4287 [SHOI2011]双倍回文

我们肯定要先建出回文自动机的

然后如果是枚举每一个节点暴跳fail指针肯定得T

那么我们对于每一个节点记录一个$trans[i]$,表示小于等于它长度一半的节点

这个可以在建自动机的时候顺便求出来,具体看代码

然后对每一个节点判断长度是否模4为0且$trans[i]$的长度是它的一半就好了

 1 //minamoto
 2 #include<cstdio>
 3 #include<cstring>
 4 template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
 5 const int N=500005;
 6 int fail[N],ch[N][26],cnt[N],len[N],trans[N];
 7 int n,m,tot,last,p,q,ans;
 8 char s[N];
 9 inline int newnode(int x){
10     len[++tot]=x;return tot;
11 }
12 inline int getfail(int x,int n){
13     while(s[n-1-len[x]]!=s[n]) x=fail[x];return x;
14 }
15 void build(){
16     for(int i=1;s[i];++i){
17         int x=s[i]-'a';
18         p=getfail(last,i);
19         if(!ch[p][x]){
20             q=newnode(len[p]+2);
21             fail[q]=ch[getfail(fail[p],i)][x];
22             ch[p][x]=q;
23             if(len[q]<=2) trans[q]=fail[q];
24             else{
25                 int tmp=trans[p];
26                 while(s[i-1-len[tmp]]!=s[i]||(len[tmp]+2)*2>len[q]) tmp=fail[tmp];
27                 trans[q]=ch[tmp][x];
28             }
29         }
30         cnt[last=ch[p][x]]++;
31     }
32 }
33 int main(){
34 //    freopen("testdata.in","r",stdin);
35     scanf("%d",&n);
36     scanf("%s",s+1);
37     s[0]=-1,fail[0]=1,last=0;
38     len[0]=0,len[1]=-1,tot=1;
39     build();
40     for(int i=tot;i>=2;--i) cnt[fail[i]]+=cnt[i];
41     for(int i=2;i<=tot;++i)
42     if((len[trans[i]]<<1)==len[i]&&len[i]%4==0) cmax(ans,len[i]);
43     printf("%d\n",ans);
44     return 0;
45 }

洛谷P4762 [CERC2014]Virus synthesis

先建一个回文自动机,然后记$dp[i]$表示转移到$i$节点代表的回文串的最少的需要次数

首先肯定2操作越多越好,经过2操作之后的串必定是一个回文串,所以最后的答案肯定是由一个回文串+不断暴力添加得来,那么答案就是$min(ans,dp[i]+n-len[i])$

然后对于一个串$i$,如果它在前面和后面加上一个字母可以形成回文串$j$,则$dp[j]=dp[i]+1$

为啥嘞?我们可以假设在形成$i$的之前一步把这个字母加上去,执行2操作后就可以变成$j$了

然后我们可以fail指针找到最长的回文串$x$满足$len[x]<=len[i]/2$,那么$dp[i]=min(dp[i],dp[x]+1+len[i]/2-len[x])$(先暴力填好一半,剩下的用2操作)

然后可以用队列记录状态,保证转移至有序的

至于怎么找$x$,我们可以直接在建自动机的时候顺便求出来,就是多跳几次。这个看代码好了

 1 //minamoto
 2 #include<cstring>
 3 #include<cstdio>
 4 template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
 5 const int N=2e5+5,M=5;
 6 char s[N];int dp[N],len[N],fail[N],ch[N][M];
 7 int trans[N],last,p,q,str[N],tot,ans,n,qu[N];
 8 int val[105];
 9 inline int newnode(int x){
10     len[++tot]=x;memset(ch[tot],0,sizeof(ch[tot])*5);return tot;
11 }
12 inline int getfail(int x,int n){
13     while(s[n-len[x]-1]!=s[n]) x=fail[x];return x;
14 }
15 inline void init(){
16     val['A']=0,val['T']=1,val['C']=2,val['G']=3;
17     s[0]=-1,fail[0]=1,last=0;
18     len[0]=0,len[1]=-1,tot=1;
19     memset(ch[0],0,sizeof(int)*5),memset(ch[1],0,sizeof(int)*5);
20 }
21 void ins(int c,int i){
22     p=getfail(last,i);
23     if(!ch[p][c]){
24         q=newnode(len[p]+2);
25         fail[q]=ch[getfail(fail[p],i)][c];
26         ch[p][c]=q;
27         if(len[q]<=2) trans[q]=fail[q];
28         else{
29             int tmp=trans[p];
30             while(s[i-1-len[tmp]]!=s[i]||(len[tmp]+2)*2>len[q]) tmp=fail[tmp];
31             trans[q]=ch[tmp][c];
32         }
33     }
34     last=ch[p][c];
35 //    printf("%d\n",last);
36 }
37 int main(){
38 //    freopen("testdata.in","r",stdin);
39     int T;scanf("%d",&T);
40     while(T--){
41         scanf("%s",s+1);
42         init(),ans=n=strlen(s+1);
43         for(int i=1;i<=n;++i) ins(val[s[i]],i);
44         for(int i=2;i<=tot;++i) dp[i]=len[i];
45         int h=1,t=0;qu[++t]=0,dp[0]=1;
46         while(h<=t){
47             int u=qu[h++];
48             for(int i=0;i<4;++i){
49                 int x=ch[u][i];
50                 if(!x) continue;
51                 dp[x]=dp[u]+1;
52                 int y=trans[x];
53                 cmin(dp[x],dp[y]+1+len[x]/2-len[y]);
54                 cmin(ans,dp[x]+n-len[x]);
55                 qu[++t]=x;
56             }
57         }
58         printf("%d\n",ans);
59     }
60     return 0;
61 }

 我感觉我整个人都自动机了……

深深地明白自己的弱小
posted @ 2018-09-11 21:55  bztMinamoto  阅读(1720)  评论(6编辑  收藏  举报
Live2D