随笔分类 -  数论——卢卡斯定理

摘要:题面 "传送门" 题解 果然……扩展$Lucas$学了跟没学一样…… 我们先考虑$a=b$的情况,这种情况下每一个$A$胜的方案中$A$和$B$的所有位上一起取反一定是一个$A$败的方案,而平局的方案取反之后仍然是一个平局的方案。那么我们可以用总的方案数$2^{a+b}$减去平局的次数除以$2$就行 阅读全文
posted @ 2019-02-28 21:18 bztMinamoto 阅读(238) 评论(0) 推荐(0)
摘要:题面 "传送门" 题解 为啥全世界除了我都会$exLucas$啊……然而我连中国剩余定理都不会orz 不知道$exLucas$是什么的可以去看看yx巨巨的这篇博客 "这里" 好了现在我们就解决了计算组合数的问题了,接下来问题就在于怎么计算了 首先如果是强制大于等于很简单,设条件分别为$x_i\geq 阅读全文
posted @ 2019-02-27 22:13 bztMinamoto 阅读(258) 评论(0) 推荐(0)
摘要:传送门 好吧我数学差的好像不是一点半点…… 题目求的是$G^{\sum_{d|n}C^d_n}mod\ 999911659$ 我们可以利用费马小定理$a^{k}\equiv a^{k\ mod\ (p-1)}(mod\ p)$ 然后组合数可以直接用Lucas搞 那么就做完啦 然而$p-1$并不是质数 阅读全文
posted @ 2018-09-29 18:13 bztMinamoto 阅读(181) 评论(0) 推荐(0)
摘要:当$p$为素数时 $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$ 设$n=s*p+q,m\equiv t*p+r(q,r<=p)$ 我们要证$C_{s*p+q}^{t*p+r}\equiv C_s^t*C_q^r$ 首先得有个前置知识,费马 阅读全文
posted @ 2018-08-23 11:21 bztMinamoto 阅读(571) 评论(0) 推荐(3)

Live2D