P66作业

点击查看代码
import torch
from torch import optim, nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

#数据加载
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

train_dataset = datasets.CIFAR10(root="D:\\Pysch2\\Pytorch\\cifar-10-python", train=True, download=False, transform=transform_train)
test_dataset = datasets.CIFAR10(root="D:\\Pysch2\\Pytorch\\cifar-10-python", train=False, download=False, transform=transform_test)

train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=4)

print(f"Train samples: {len(train_dataset)}")
print(f"Test samples: {len(test_dataset)}")
print(f"Classes: {train_dataset.classes}")

#定义MYVGG模型
class MYVGG(nn.Module):
    def __init__(self, num_classes=10):
        super(MYVGG, self).__init__()
        self.features = nn.Sequential(
            # Block 1
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            # Block 2
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            # Block 3
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            # Block 4
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            # Block 5
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
        )
        self.classifier = nn.Sequential(
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x
    
#训练函数
def train(model, train_loader, epoch_num=5):
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()

    for epoch in range(epoch_num):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % 100 == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))
                
    torch.save(model.state_dict(), 'cifar10_vgg.pth')
    print("Model saved to cifar10_vgg.pth")

#测试函数
def test(model, test_loader):
    model.load_state_dict(torch.load('cifar10_vgg.pth', map_location=device))
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            outputs = model(data)
            predicted = torch.argmax(outputs, dim=1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
    acc = 100.0 * correct / total
    print(f'Accuracy on CIFAR-10 test set: {acc:.2f}% ({correct}/{total})')

#主函数入口
if __name__ == '__main__':
    model = MYVGG(num_classes=10).to(device)
    if device == 'cuda':
        print(f"Using {torch.cuda.device_count()} GPUs")
    else:
        print("Using CPU")

    print("Start training on CIFAR-10...")
    train(model, train_loader,epoch_num=5)

    print("Start testing...")
    test(model, test_loader)
    print("24信计2班 刘伯伦 2024310143129")
posted @ 2025-10-15 10:22  bolun123  阅读(4)  评论(0)    收藏  举报