点击查看代码
import torch
from torch import optim, nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#数据加载
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_dataset = datasets.CIFAR10(root="D:\\Pysch2\\Pytorch\\cifar-10-python", train=True, download=False, transform=transform_train)
test_dataset = datasets.CIFAR10(root="D:\\Pysch2\\Pytorch\\cifar-10-python", train=False, download=False, transform=transform_test)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=4)
print(f"Train samples: {len(train_dataset)}")
print(f"Test samples: {len(test_dataset)}")
print(f"Classes: {train_dataset.classes}")
#定义MYVGG模型
class MYVGG(nn.Module):
def __init__(self, num_classes=10):
super(MYVGG, self).__init__()
self.features = nn.Sequential(
# Block 1
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
# Block 2
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
# Block 3
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
# Block 4
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
# Block 5
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
)
self.classifier = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(512, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
#训练函数
def train(model, train_loader, epoch_num=5):
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
for epoch in range(epoch_num):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
torch.save(model.state_dict(), 'cifar10_vgg.pth')
print("Model saved to cifar10_vgg.pth")
#测试函数
def test(model, test_loader):
model.load_state_dict(torch.load('cifar10_vgg.pth', map_location=device))
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
outputs = model(data)
predicted = torch.argmax(outputs, dim=1)
total += target.size(0)
correct += (predicted == target).sum().item()
acc = 100.0 * correct / total
print(f'Accuracy on CIFAR-10 test set: {acc:.2f}% ({correct}/{total})')
#主函数入口
if __name__ == '__main__':
model = MYVGG(num_classes=10).to(device)
if device == 'cuda':
print(f"Using {torch.cuda.device_count()} GPUs")
else:
print("Using CPU")
print("Start training on CIFAR-10...")
train(model, train_loader,epoch_num=5)
print("Start testing...")
test(model, test_loader)
print("24信计2班 刘伯伦 2024310143129")