【C语言】LeetCode热题100之技巧
【C语言】LeetCode热题100之技巧
简单
给你一个 非空 整数数组 nums
,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。
示例 1 :
输入:nums = [2,2,1]
输出:1
示例 2 :
输入:nums = [4,1,2,1,2]
输出:4
示例 3 :
输入:nums = [1]
输出:1
提示:
1 <= nums.length <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
- 除了某个元素只出现一次以外,其余每个元素均出现两次。
int singleNumber(int* nums, int numsSize) {
int ret = 0;
for (int i = 0; i < numsSize; ++i) {
ret ^= nums[i];
}
return ret;
}
简单
给定一个大小为 n
的数组 nums
,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋
的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入:nums = [3,2,3]
输出:3
示例 2:
输入:nums = [2,2,1,1,1,2,2]
输出:2
提示:
n == nums.length
1 <= n <= 5 * 104
-109 <= nums[i] <= 109
进阶:尝试设计时间复杂度为 O(n)、空间复杂度为 O(1) 的算法解决此问题。
int majorityElement(int* nums, int numsSize) {
int cnt = 0;
int curNum;
for (int i = 0; i < numsSize; ++i) {
if (cnt == 0) {
curNum = nums[i];
}
curNum == nums[i] ? cnt++ : cnt--;
}
return curNum;
}
中等
给定一个包含红色、白色和蓝色、共 n
个元素的数组 nums
,原地 对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。
我们使用整数 0
、 1
和 2
分别表示红色、白色和蓝色。
必须在不使用库内置的 sort 函数的情况下解决这个问题。
示例 1:
输入:nums = [2,0,2,1,1,0]
输出:[0,0,1,1,2,2]
示例 2:
输入:nums = [2,0,1]
输出:[0,1,2]
提示:
n == nums.length
1 <= n <= 300
nums[i]
为0
、1
或2
进阶:
- 你能想出一个仅使用常数空间的一趟扫描算法吗?
void swap(int *a, int *b) {
int t = *a;
*a = *b;
*b = t;
}
void sortColors(int* nums, int numsSize) {
int p0 = 0, p2 = numsSize - 1;
for (int i = 0; i < numsSize; ++i) {
while (i <= p2 && nums[i] == 2) {
swap(&nums[i], &nums[p2]);
p2--;
}
if (nums[i] == 0) {
swap(&nums[i], &nums[p0]);
p0++;
}
}
}
中等
整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。
- 例如,
arr = [1,2,3]
,以下这些都可以视作arr
的排列:[1,2,3]
、[1,3,2]
、[3,1,2]
、[2,3,1]
。
整数数组的 下一个排列 是指其整数的下一个字典序更大的排列。更正式地,如果数组的所有排列根据其字典顺序从小到大排列在一个容器中,那么数组的 下一个排列 就是在这个有序容器中排在它后面的那个排列。如果不存在下一个更大的排列,那么这个数组必须重排为字典序最小的排列(即,其元素按升序排列)。
- 例如,
arr = [1,2,3]
的下一个排列是[1,3,2]
。 - 类似地,
arr = [2,3,1]
的下一个排列是[3,1,2]
。 - 而
arr = [3,2,1]
的下一个排列是[1,2,3]
,因为[3,2,1]
不存在一个字典序更大的排列。
给你一个整数数组 nums
,找出 nums
的下一个排列。
必须 原地 修改,只允许使用额外常数空间。
示例 1:
输入:nums = [1,2,3]
输出:[1,3,2]
示例 2:
输入:nums = [3,2,1]
输出:[1,2,3]
示例 3:
输入:nums = [1,1,5]
输出:[1,5,1]
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 100
题解:
我们希望找到一种方法,能够找到一个大于当前序列的新序列,且变大的幅度尽可能小。具体地:
我们需要将一个左边的「较小数」与一个右边的「较大数」交换,以能够让当前排列变大,从而得到下一个排列。
同时我们要让这个「较小数」尽量靠右,而「较大数」尽可能小。当交换完成后,「较大数」右边的数需要按照升序重新排列。这样可以在保证新排列大于原来排列的情况下,使变大的幅度尽可能小。
void swap(int* a, int* b) {
int t = *a;
*a = *b;
*b = t;
}
void reverse(int* nums, int left, int right) {
while (left < right) {
swap(nums + left, nums + right);
left++;
right--;
}
}
void nextPermutation(int* nums, int numsSize) {
int i = numsSize - 2;
while (i >= 0 && nums[i] >= nums[i + 1]) {
i--;
}
if (i >= 0) {
int j = numsSize - 1;
while (j >= 0 && nums[i] >= nums[j]) {
j--;
}
swap(nums + i, nums + j);
}
reverse(nums, i + 1, numsSize - 1);
}
中等
给定一个包含 n + 1
个整数的数组 nums
,其数字都在 [1, n]
范围内(包括 1
和 n
),可知至少存在一个重复的整数。
假设 nums
只有 一个重复的整数 ,返回 这个重复的数 。
你设计的解决方案必须 不修改 数组 nums
且只用常量级 O(1)
的额外空间。
示例 1:
输入:nums = [1,3,4,2,2]
输出:2
示例 2:
输入:nums = [3,1,3,4,2]
输出:3
示例 3 :
输入:nums = [3,3,3,3,3]
输出:3
提示:
1 <= n <= 105
nums.length == n + 1
1 <= nums[i] <= n
nums
中 只有一个整数 出现 两次或多次 ,其余整数均只出现 一次
进阶:
- 如何证明
nums
中至少存在一个重复的数字? - 你可以设计一个线性级时间复杂度
O(n)
的解决方案吗?
快慢指针
int findDuplicate(int* nums, int numsSize) {
int slow = 0, fast = 0;
do {
slow = nums[slow];
fast = nums[nums[fast]];
} while (fast != slow);
slow = 0;
while (fast != slow) {
fast = nums[fast];
slow = nums[slow];
}
return slow;
}