kl:
在java线程中我们使用synchronized关键字来实现线程间的同步互斥工作,而重入锁和读写锁比synchronized更为强大的功能.
ReentrantLock(重入锁)重入锁,在需要进行同步的代码部分上加上锁定,但是不要忘记要释放锁,不然会会造成锁永远不能释放,其它线程永远进不来的情况.
kl:
读写锁:
ReentrantReadWriteLOck.其核心是实现读写分离的锁.在高并发访问下,尤其是读多写少的情况下,性能远高于重入锁,在ReentrantLock和synchronized中,在同一时间内只能有一个线程访问被锁定的代码,读写锁则是 不同,其本质是分为两个锁,即读锁和写锁,在读锁下多个线程可以并发的进行访问,但是在写锁时,只能一个个的顺序访问. 口诀 读读共享,写写互斥,读写互斥.
eg:
private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
private ReadLock readLock = rwLock.readLock();
private WriteLock writeLock = rwLock.writeLock();
有一个方法进行只读操作就可以用readLock,写操作就用writeLock,读写的时候writeLock,---finally{释放}
kl:
分布式锁? zookeeper...
Disruptor: 入门
实现hello word
第一: 建立一个Event类
第二:建立一个工厂的Event类,用于创建Event类的实例对象
第三:需要一个监听事件的类,用于处理数据event
第四:需要进行测试代码的编写,实例化Disruptor,配置一系列的参数,然后我们对Disruptor实例绑定监听事件的类,接受并处理数据.
第五:Disruptor中,真正存储数据的核心叫做ringBuffer.我们通过Disruptor实例拿到它,然后把数据生产出来,把数据放到ringBuffer(这是一个环形的数据结构)的实例对象中即可.
//event 事件
public class LongEvent { //创建Event类 private long value; public long getValue() { return value; } public void setValue(long value) { this.value = value; } }
//事件工厂
public class LongEventFactory implements EventFactory{ //需要讓我disruptor為我們創建事件,同時申明一個EventFactory來實力惡化Event對象 @Override public Object newInstance() { return new LongEvent(); } }
import java.nio.ByteBuffer; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import com.lmax.disruptor.RingBuffer; import com.lmax.disruptor.YieldingWaitStrategy; import com.lmax.disruptor.dsl.Disruptor; import com.lmax.disruptor.dsl.EventHandlerGroup; import com.lmax.disruptor.dsl.ProducerType; public class LongMain { @SuppressWarnings("unchecked") private void mian() { //创建缓冲池 ExecutorService newCachedThreadPool = Executors.newCachedThreadPool(); //创建工厂 LongEventFactory longEventFactory = new LongEventFactory(); //创建bufferSize,也就是RingBuffer的大小,必须是2的N次方 int ringBufferSize = 1024 * 1024; //创建disruptor //1.第一个参数为工厂类对象用于创建一个个的Longevent,LongEvent是实际的消费数据 //2.第二个参数,是缓冲区大小 //3.第三个参数,线程池在disruptor中进行内部数据接受处理调度 //4.第四个参数ProducerType.SINGLE和ProducerType.MULTI 这里表示有几个生产者 //5.第五个参数是一种策略 WaitStrategy 给DisRuptor内部做一个协调 比如生产端生产数据块,消费端消费比较慢..... Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(longEventFactory, ringBufferSize, newCachedThreadPool, ProducerType.SINGLE, new YieldingWaitStrategy()); //连接消费事件的方法 (理解为消费者) 类似与一个事件监听的实体类 监听发布的数据 EventHandlerGroup<LongEvent> handleEventsWith = disruptor.handleEventsWith(new LongEventHandler()); //启动 disruptor.start(); //disruptor 的事件发布的一个过程是一个两阶段的提交过程 //发布事件 (真正方数据的容器,它是一个环形结构) RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer(); //生产者实现 LongEventProducer longEventProducer = new LongEventProducer(ringBuffer); ByteBuffer bb = ByteBuffer.allocate(8); for(long a = 0 ; a < 100 ; a++){ bb.putLong(0, a); longEventProducer.onData(bb); } disruptor.shutdown(); //关闭disrutor 方法会阻塞,知道所有的事件都得到处理 newCachedThreadPool.shutdown(); //关闭disruptor 使用的线程池 如果需要必须手动关闭 ,disrupotor 在shutDowm时不会自动关闭 } }
//生成者
import java.nio.ByteBuffer; import com.lmax.disruptor.RingBuffer; public class LongEventProducer { private final RingBuffer<LongEvent> ringBuffer; public LongEventProducer(RingBuffer<LongEvent> ringBuffer){ this.ringBuffer = ringBuffer; } //生产者生产数据 onData用来发布事件,每一个调用就发布一次事件 //它的参数会通过事件传递个消费者 public void onData(ByteBuffer bb){ //1.可以把ringBuffer看做一个事件队列,那么next是得到下面一个事件槽. (获取到槽将数据放到下一个槽里面) long sequence = ringBuffer.next(); //这里获取到的是槽的下标 try { //2.上面的索引取出一个空的事件用于填充 (获取改序列对应的事件对象) 第一个获取到的sequence索引为0,get时相当于创建一个新的对象. LongEvent longEvent = ringBuffer.get(sequence); //3.获取要通过事件传递的业务数据 longEvent.setValue(bb.getLong(0)); } catch (Exception e) { // TODO: handle exception }finally{ //4.发布事件 //最后的ringBuffer.() 方法必须包含在finally 中以确保必须得到调用 如果某个请求的sequence 未被提交 ringBuffer.publish(sequence); } } }
//监听模式,可理解为消费者
import com.lmax.disruptor.EventHandler; //我们还需要一个事件的消费者,也就是一个事件的处理器,这个事件处理器简单的把事件中存储的数据打印到终端 public class LongEventHandler implements EventHandler<LongEvent>{ @Override public void onEvent(LongEvent longEvent, long arg1, boolean arg2) throws Exception { System.out.println(longEvent.getValue()); } }
//disruptor 对生产者提供的一种简单实现
import java.nio.ByteBuffer; import com.lmax.disruptor.EventTranslatorOneArg; import com.lmax.disruptor.RingBuffer; public class LongEventProducerWithTranslator { //一个translator可以看做一个事件的初始化 publishEvent 会调用它 这里的LongEvent 为数据类型 ByteBuffer为真实的数据 private static final EventTranslatorOneArg<LongEvent, ByteBuffer> translator = new EventTranslatorOneArg<LongEvent, ByteBuffer>() { @Override public void translateTo(LongEvent longEvent, long sequence, ByteBuffer buffer) { longEvent.setValue(buffer.getLong(0)); } }; private final RingBuffer<LongEvent> ringBuffer; public LongEventProducerWithTranslator(RingBuffer<LongEvent> ringBuffer){ this.ringBuffer = ringBuffer; } public void onData(ByteBuffer bb){ ringBuffer.publishEvent(translator, bb); } }
SequenceBarrier ,由Sequencer生成,并且包含了已经发布的Sequence的引用,这些Sequence源于Sequencer和一些独立消费的Sequence.它包含了决定是否有供消费者来消费的Event逻辑.
EventProcessor : 主要事件循环,处理Disruptor中的Event ,并且拥有消费者的sequence,它有一个实现类BatchEventProcessor,包含了Event loop有效的实现,并且将回调到一个EventHandler接口的实现对象.
kl:EventProcessor模式
public class Trade { private String id; private String name; private double price; public String getId() { return id; } public void setId(String id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public double getPrice() { return price; } public void setPrice(double price) { this.price = price; } }
import java.util.UUID;
import com.lmax.disruptor.EventHandler;
import com.lmax.disruptor.WorkHandler;
public class TradeHandler implements EventHandler<Trade> ,WorkHandler<Trade>{
@Override
public void onEvent(Trade event) throws Exception {
//这里做消费的具体逻辑
UUID uuid=UUID.randomUUID();
String str = uuid.toString();
String uuidStr=str.replace("-", "");
event.setId(uuidStr);
System.out.println(event.getId());
}
@Override
public void onEvent(Trade event, long sequence, boolean endOfBatch)
throws Exception {
this.onEvent(event);
}
}
import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import com.lmax.disruptor.BatchEventProcessor; import com.lmax.disruptor.EventFactory; import com.lmax.disruptor.RingBuffer; import com.lmax.disruptor.SequenceBarrier; import com.lmax.disruptor.YieldingWaitStrategy; public class Main1 { public static void main(String[] args) throws InterruptedException, ExecutionException { int BUFFER_SIZE = 1024; int THREAD_NUMBERS = 4; // RingBuffer<Trade> ringBuffer = RingBuffer.createSingleProducer(new EventFactory<Trade>() { @Override public Trade newInstance() { return new Trade(); } }, BUFFER_SIZE, new YieldingWaitStrategy()); //创建线程池 ExecutorService newFixedThreadPool = Executors.newFixedThreadPool(THREAD_NUMBERS); //创建SequenceBarrier (序列的障碍) 有的生产快消费慢 ,有的消费快生产慢 做一个权衡 设置屏障 SequenceBarrier newBarrier = ringBuffer.newBarrier(); //创建消息处理器 (可以理解为一个特殊的消费者对象) 这里处理数据是从ringBuffer中取的 怎么出处理 由TreadHadler决定 BatchEventProcessor<Trade> transProcessor = new BatchEventProcessor<>(ringBuffer, newBarrier, new TradeHandler()); //这一步的目的就是把消费者的位置消息引用注入到生产者 如果只有一个消费者的情况可以省略 这是具体的平衡策略 ringBuffer.addGatingSequences(transProcessor.getSequence()); //把消息处理器提交到线程池 Future<?> submit = newFixedThreadPool.submit(transProcessor); //如果存在多个消费者,那么重复执行上面三行代码,把 TradeHandler换成其他的消费者类 //生产者 产生数据 向ringBuffer设置数据 Future submit2 = newFixedThreadPool.submit(new Callable() { @Override public Void call() throws Exception { long next ; for(int i=0; i<10;i++){ next = ringBuffer.next(); //占一个ringBuffer的可用区域 ringBuffer.get(next).setPrice(Math.random()*9999); //给这块区域设置数据 ringBuffer.publish(next); //发布这个区域的数据使handler 消费者可用 } return null; } }); //等待生产者生产结束 submit2.get(); Thread.sleep(1000); //等待一秒 等消费者都处理完成 transProcessor.halt(); //通知消息处理器 可以结束了,但并不是马上结束的!!! newFixedThreadPool.shutdown(); //终止线程 } }
WorkProcessor: 确保每一个sequence只被一个processor消费,在同一个WorkerPool中处理多个WorkProcess不会消费同样的sequence
kl: workProcessor模式
import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import com.lmax.disruptor.BatchEventProcessor; import com.lmax.disruptor.EventFactory; import com.lmax.disruptor.IgnoreExceptionHandler; import com.lmax.disruptor.RingBuffer; import com.lmax.disruptor.SequenceBarrier; import com.lmax.disruptor.WorkHandler; import com.lmax.disruptor.WorkerPool; import com.lmax.disruptor.YieldingWaitStrategy; public class Main2 { public static void main(String[] args) throws InterruptedException, ExecutionException { int BUFFER_SIZE = 1024; int THREAD_NUMBERS = 4; // RingBuffer<Trade> ringBuffer = RingBuffer.createSingleProducer(new EventFactory<Trade>() { @Override public Trade newInstance() { return new Trade(); } }, BUFFER_SIZE, new YieldingWaitStrategy()); //创建线程池 ExecutorService newFixedThreadPool = Executors.newFixedThreadPool(THREAD_NUMBERS); //创建SequenceBarrier (序列的障碍) 有的生产快消费慢 ,有的消费快生产慢 做一个权衡 设置屏障 SequenceBarrier newBarrier = ringBuffer.newBarrier(); //workProcessor 模式 这里的Workerhandler 充当了消费者处理 WorkHandler<Trade> handler = new TradeHandler(); //工作池 newBarrier用来做平衡 WorkerPool<Trade> workerPool = new WorkerPool<>(ringBuffer, newBarrier, new IgnoreExceptionHandler(), handler); workerPool.start(newFixedThreadPool); //如果存在多个消费者,那么重复执行上面三行代码,把 TradeHandler换成其他的消费者类 //生产者 产生数据 向ringBuffer设置数据 for(int i=0; i<10;i++){ long next = ringBuffer.next(); //占一个ringBuffer的可用区域 ringBuffer.get(next).setPrice(Math.random()*9999); //给这块区域设置数据 ringBuffer.publish(next); //发布这个区域的数据使handler 消费者可用 } Thread.sleep(1000); //等待一秒 等消费者都处理完成 workerPool.halt(); //通知消息处理器 可以结束了,但并不是马上结束的!!! newFixedThreadPool.shutdown(); //终止线程 } }
Disruptor 在复杂场景下使用RingBuffer
kl: 希望p1生产的数据给c1,c2并执行,最后c1,c2执行结束后c3执行.

kl -->l菱形 顺序执行
import java.util.Random; import java.util.concurrent.CountDownLatch; import com.heima.disruptor.workprocess.Trade; import com.lmax.disruptor.EventTranslator; import com.lmax.disruptor.dsl.Disruptor; public class TradePublisher implements Runnable{ public Disruptor<Trade> disruptor; private CountDownLatch latch; private Random ranDom = new Random(); private static int LOOP = 1; public TradePublisher(Disruptor<Trade> disruptor,CountDownLatch latch){ this.disruptor = disruptor; this.latch = latch; } @Override public void run() { EventTranslator<Trade> eventTranslator = new EventTranslator<Trade>() { @Override public void translateTo(Trade event, long sequence) { this.generateTrade(event); } public Trade generateTrade(Trade event){ event.setPrice(ranDom.nextDouble() * 1000); return event; } }; for (int i = 0; i < LOOP; i++) { disruptor.publishEvent(eventTranslator); } latch.countDown(); } }
import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import jcifs.smb.Handler; import com.heima.disruptor.workprocess.Trade; import com.lmax.disruptor.EventFactory; import com.lmax.disruptor.YieldingWaitStrategy; import com.lmax.disruptor.dsl.Disruptor; import com.lmax.disruptor.dsl.EventHandlerGroup; import com.lmax.disruptor.dsl.ProducerType; public class Mian { @SuppressWarnings("unchecked") public static void main(String[] args) throws InterruptedException, ExecutionException { long bigenTime = System.currentTimeMillis(); //创建线程池 ExecutorService newFixedThreadPool = Executors.newFixedThreadPool(8); //创建缓存区 int bufferSize = 1024; //创建disruptor Disruptor<Trade> disruptor = new Disruptor<>(new EventFactory<Trade>() { @Override public Trade newInstance() { return new Trade(); } }, bufferSize, newFixedThreadPool, ProducerType.SINGLE, new YieldingWaitStrategy()); //菱形操作 /* //使用disruptor创建c1,c2消费者组 EventHandlerGroup<Trade> handleEventsWith = disruptor.handleEventsWith(new Handler1(),new Handler2()); //声明在c1,c2完事之后执行jms消息发送机制,也就是流程走到c3 handleEventsWith.then(new Handler3()); */ //六边形操作 /*Handler1 handler1 = new Handler1(); Handler2 handler2 = new Handler2(); Handler3 handler3 = new Handler3(); Handler4 handler4 = new Handler4(); Handler5 handler5 = new Handler5(); disruptor.handleEventsWith(handler1,handler2); disruptor.after(handler1).handleEventsWith(handler4); disruptor.after(handler2).handleEventsWith(handler5); disruptor.after(handler4,handler5).handleEventsWith(handler3); */ //顺序执行 disruptor.handleEventsWith(new Handler1()).handleEventsWith(new Handler2()).handleEventsWith(new Handler3()); //启动 disruptor.start(); CountDownLatch latch = new CountDownLatch(1); //生产者产生数据准备 Future<?> submit = newFixedThreadPool.submit(new TradePublisher(disruptor, latch)); submit.get(); //等待生产者完事 latch.await(); Thread.sleep(1000); disruptor.shutdown(); newFixedThreadPool.shutdown(); System.out.println("总耗时"+(System.currentTimeMillis()-bigenTime)); } }
import com.heima.disruptor.workprocess.Trade; import com.lmax.disruptor.EventHandler; import com.lmax.disruptor.WorkHandler; public class Handler1 implements EventHandler<Trade> ,WorkHandler<Trade>{ @Override public void onEvent(Trade event, long sequence, boolean endOfBatch) throws Exception { this.onEvent(event); } @Override public void onEvent(Trade event) throws Exception { System.out.println("handler1 set name"); event.setName("h1"); Thread.sleep(1000); } } public class Handler2 implements EventHandler<Trade>,WorkHandler<Trade> { @Override public void onEvent(Trade event, long sequence, boolean endOfBatch) throws Exception { this.onEvent(event); } @Override public void onEvent(Trade event) throws Exception { System.out.println("handler2 set price"); event.setPrice(17); Thread.sleep(1000); } } public class Handler3 implements EventHandler<Trade>,WorkHandler<Trade> { @Override public void onEvent(Trade event, long sequence, boolean endOfBatch) throws Exception { // TODO Auto-generated method stub this.onEvent(event); } @Override public void onEvent(Trade event) throws Exception { // TODO Auto-generated method stub System.out.println("handler3 name" + event.getName() +"price" + event.getPrice()+"instance" + event.toString()); } } public class Handler4 implements EventHandler<Trade>,WorkHandler<Trade>{ @Override public void onEvent(Trade event) throws Exception { System.out.println("handler4 get name" + event.getName()); event.setName(event.getName()+"h4"); } @Override public void onEvent(Trade event, long sequence, boolean endOfBatch) throws Exception { this.onEvent(event); } } public class Handler5 implements EventHandler<Trade>,WorkHandler<Trade>{ @Override public void onEvent(Trade event) throws Exception { System.out.println("Handler5 get price" + event.getPrice()); event.setPrice(event.getPrice() + 3); } @Override public void onEvent(Trade event, long sequence, boolean endOfBatch) throws Exception { this.onEvent(event); } }
多个生产者多个消费者的情况
import java.util.UUID; import java.util.concurrent.CountDownLatch; import java.util.concurrent.Executor; import java.util.concurrent.Executors; import com.lmax.disruptor.EventFactory; import com.lmax.disruptor.IgnoreExceptionHandler; import com.lmax.disruptor.RingBuffer; import com.lmax.disruptor.SequenceBarrier; import com.lmax.disruptor.WorkerPool; import com.lmax.disruptor.YieldingWaitStrategy; import com.lmax.disruptor.dsl.ProducerType; public class Main { public static void main(String[] args) throws InterruptedException { //创建ringBuffer RingBuffer<Order> ringBuffer = RingBuffer.create(ProducerType.MULTI, new EventFactory<Order>() { @Override public Order newInstance() { // TODO Auto-generated method stub return new Order(); } }, 1024 * 1024, new YieldingWaitStrategy()); ////创建SequenceBarrier (序列的障碍) 有的生产快消费慢 ,有的消费快生产慢 做一个权衡 设置屏障 SequenceBarrier newBarrier = ringBuffer.newBarrier(); Consumer[] consumers = new Consumer[3]; for (int i = 0; i < consumers.length; i++) { consumers[i] = new Consumer("c"+i); } //创建工作池 WorkerPool<Order> workerPool = new WorkerPool<>(ringBuffer, newBarrier, new IgnoreExceptionHandler(), consumers); ringBuffer.addGatingSequences(workerPool.getWorkerSequences()); //启动线程去消费 workerPool.start(Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors())); final CountDownLatch latch = new CountDownLatch(1); //创建生产者 100个生产者创建100个线程 生产10000条数据 for(int i=0; i<100 ;i++){ final Producer p = new Producer(ringBuffer); new Thread(new Runnable() { @Override public void run() { // TODO Auto-generated method stub try { latch.await(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } for (int j = 0; j < 100; j++) { p.onData(UUID.randomUUID().toString()); } } }).start(); } Thread.sleep(2000); //等待线程创建完成 System.out.println("开始生产数据----"); latch.countDown(); Thread.sleep(5000); System.out.println("总数:"+consumers[0].getCount()); } }
import java.util.concurrent.atomic.AtomicInteger; import com.lmax.disruptor.WorkHandler; public class Consumer implements WorkHandler<Order>{ private String consumerId; private static AtomicInteger atomic = new AtomicInteger(); public Consumer(String consumerId){ this.consumerId = consumerId; } @Override public void onEvent(Order event) throws Exception { System.out.println("当前消费者" + this.consumerId +"订单id" +event.getId()); atomic.incrementAndGet(); } public int getCount(){ return atomic.get(); } }
import com.lmax.disruptor.RingBuffer; public class Producer { private RingBuffer<Order> ringBuffer; public Producer(RingBuffer<Order> ringBuffer){ this.ringBuffer = ringBuffer; } /* * onData 用来发布事件没调用一次就发布一次事件 */ public void onData(String data){ long next = ringBuffer.next(); try { Order order = ringBuffer.get(next); //获取要通过事件传播的业务诗句 order.setId(data); } catch (Exception e) { // TODO: handle exception }finally{ ringBuffer.publish(next); } } }
public class Order { private String id; private String name; private double price; public String getId() { return id; } public void setId(String id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public double getPrice() { return price; } public void setPrice(double price) { this.price = price; } }
浙公网安备 33010602011771号