C++对象池

前言

  • 大量使用的对象,重复的创建和销毁,很耗费性能,这个时候就要使用对象池技术。当物体使用时,如果对象池中有,从对象池中取出使用,没有就创建,不使用时候,将物体放回对象池,改变状态就是新的对象。
  • 常使用在飞机弹幕游戏中,玩家射击的时候,会创建很多子弹对象,当子弹对象碰到敌人时,会被销毁。不断的创建销毁对象时游戏帧数会下降,导致卡屏,所以可以使用对象池技术来解决。
  • 对象池根据类型可变,必须使用模板来实现,这样就会达到我有什么样类型,就会有什么样的对象池。

效果和代码实现

  • 下图是程序运行的效果:

ObjectPool.h

#pragma once
#ifndef __OBJECTPOOL_H__
#define __OBJECTPOOL_H__
#include<cassert>
#include<mutex>

#ifdef _DEBUG
	#ifndef MyPrintf
	#define MyPrintf(...) printf(__VA_ARGS__)
	#endif
#else
	#ifndef MyPrintf
	#define MyPrintf(...)  
	#endif

#endif // !_Debug

template<typename T,size_t nPoolSize>
class ObjectPool
{
private:
	struct ObjectNodeHeader
	{
		ObjectNodeHeader* pNext;
		char nRef;
		bool bPool;
	};
public:
	ObjectPool()
	{
		MyPrintf("对象池初始化\n");
		_InitObjectPool();
	}
	~ObjectPool()
	{
		MyPrintf("对象池析构\n");
		if (_pBuf != nullptr)
		{
			free(_pBuf);
		}
		_pBuf = nullptr;
	}
	//释放对象
	void freeObject(void* pObject)
	{
		MyPrintf("释放对象%p\n", pObject);
		//计算出对象所在的对象信息头部地址
		ObjectNodeHeader* pObjNode = (ObjectNodeHeader*)((char*)pObject - sizeof(ObjectNodeHeader));
		assert(1 == pObjNode->nRef);
		pObjNode->nRef = 0;
		if (pObjNode->bPool)
		{
			std::lock_guard<std::mutex> lock(_mutex);
			pObjNode->pNext = _pHeader;
			_pHeader = pObjNode;
		}
		else
		{
			//不在对象池
			free(pObjNode);
		}
	}

	//申请对象
	void* allocObject(size_t size)
	{
		std::lock_guard<std::mutex> lock(_mutex);
		ObjectNodeHeader* pReturn = nullptr;
		if (nullptr == _pHeader)//内存耗尽
		{

			pReturn = (ObjectNodeHeader*)malloc(sizeof(T) + sizeof(ObjectNodeHeader));
			pReturn->bPool = false;
			pReturn->nRef = 1;
			pReturn->pNext = nullptr;
			MyPrintf("内存耗尽从系统中申请对象%p\n", ((char*)pReturn) + sizeof(ObjectNodeHeader));
		}
		else
		{
			pReturn = _pHeader;
			_pHeader = _pHeader->pNext;
			assert(0 == pReturn->nRef);
			pReturn->nRef = 1;
			MyPrintf("从对象池中申请对象%p\n", ((char*)pReturn) + sizeof(ObjectNodeHeader));
		}
		//跳过头部的信息的字节大小
		return (char*)pReturn + sizeof(ObjectNodeHeader);
	}
protected:

	void _InitObjectPool()
	{
		assert(nullptr == _pBuf);
		if (_pBuf) { return; }
		//计算对象池的大小分配空间
		size_t realsize = sizeof(ObjectNodeHeader) + sizeof(T);
		size_t bufsize = nPoolSize * realsize;
		_pBuf = (char*)malloc(bufsize);
		//初始化对象节点数据
		_pHeader = (ObjectNodeHeader*)_pBuf;
		_pHeader->bPool = true;
		_pHeader->nRef = 0;
		_pHeader->pNext = nullptr;
		//遍历链表结构初始化
		ObjectNodeHeader* pPerNode = _pHeader;
		for (size_t i = 1; i < nPoolSize; ++i)
		{
			ObjectNodeHeader* pCurNode = (ObjectNodeHeader*)(_pBuf + i * realsize);
			pCurNode->bPool = true;
			pCurNode->nRef = 0;
			pCurNode->pNext = nullptr;
			pPerNode->pNext = pCurNode;
			pPerNode = pCurNode;
		}
	}

private:
	ObjectNodeHeader* _pHeader;
	char* _pBuf;
	std::mutex _mutex;
};

//对象接口模板
template<typename T,rsize_t nPoolSize>

class PoolBaseObject
{
public:
	void* operator new(size_t size)
	{
		MyPrintf("调用对象接管的new操作\n");
		//从对象池申请
		return _PoolInstance().allocObject(size);
	}
	void operator delete(void* p)
	{
		MyPrintf("调用对象接管的delete操作\n");
		_PoolInstance().freeObject(p);
	}
	template<typename ...Args>
	static T* createObject(Args ... args)
	{
		//这里做一些不方便在构造函数中做的事
		T* obj = new T(args...);
		return obj;
	}
	static void destroyObject(T* pobject)
	{
		delete pobject;
	}
private:
	static ObjectPool<T, nPoolSize>&_PoolInstance()
	{
		static ObjectPool< T, nPoolSize>selfPoolInstance;
		return selfPoolInstance;
	}

};
#endif // !__OBJECTPOOL_H__

额外补充

int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	for (int& a:arr)
	{
		a = 666;
	}
//	for (int i = 0; i < 10; i++)
//	{
//		int&  a = arr[i];
//		a = 666;
//	}
	for (int a:arr)
	{
		cout << a << " ";
	}
	cout << endl;
 //取里面的值不加引用,但要改值要加引用
  • 空类大小是1字节,需要站位。
  • 顺序是new->构造->析构->delete
  • foreach是只读循环
  • for (int a:arr)这种遍历更香 ~!!
posted @ 2020-07-24 19:34  人閒桂花落  阅读(840)  评论(0编辑  收藏  举报