Permutation Sequence
Given n and k, return the k-th permutation sequence.
Notice
n will be between 1 and 9 inclusive.
For n = 3, all permutations are listed as follows:
"123"
"132"
"213"
"231"
"312"
"321"
If k = 4, the fourth permutation is "231"
say n = 4, we have {1, 2, 3, 4}
If we list out all the permutations, we will get:
1 + (permutations of 2, 3, 4)
2 + (permutations of 1, 3, 4)
3 + (permutations of 1, 2, 4)
4 + (permutations of 1, 2, 3)
We know how to calculate the number of permutations of n numbers... n! So each of those with permutations of 3 numbers means there are 6 possible permutations. Meaning there would be a total of 24 permutations in this particular one. So if you were to look for the (k = 14) 14th permutation, it would be in the
3 + (permutations of 1, 2, 4) subset.
To programmatically get that, you take k = 13 (subtract 1 because of things always starting at 0) and divide that by 6 we got from the factorial, which would give you the index of the number you want. In the array {1, 2, 3, 4}, k/(n-1)! = 13/(4-1)! = 13/3! = 13/6 = 2. The array {1, 2, 3, 4} has a value of 3 at index 2. So the first number is a 3.
Then the problem repeats with less numbers.
The permutations of {1, 2, 4} would be:
1 + (permutations of 2, 4)
2 + (permutations of 1, 4)
4 + (permutations of 1, 2)
But our k is no longer the 14th, because in the previous step, we've already eliminated the 12 4-number permutations starting with 1 and 2. So you subtract 12 from k which gives you 1. Programmatically that would be
k = k - (index from previous) * (n-1)! = k - 2*(n-1)! = 13 - 2*(3)! = 1
In this second step, permutations of 2 numbers has only 2 possibilities, meaning each of the three permutations listed above a has two possibilities, giving a total of 6. We're looking for the first one, so that would be in the 1 + (permutations of 2, 4) subset.
Meaning: index to get number from is k / (n - 2)! = 1 / (4-2)! = 1 / 2! = 0.. from {1, 2, 4}, index 0 is 1
so the numbers we have so far is 3, 1... and then repeating without explanations.
{2, 4}
k = k - (index from pervious) * (n-2)! = k - 0 * (n - 2)! = 1 - 0 = 1;
third number's index = k / (n - 3)! = 1 / (4-3)! = 1/ 1! = 1... from {2, 4}, index 1 has 4
Third number is 4
{2}
k = k - (index from pervious) * (n - 3)! = k - 1 * (4 - 3)! = 1 - 1 = 0;
third number's index = k / (n - 4)! = 0 / (4-4)! = 0/ 1 = 0... from {2}, index 0 has 2
Fourth number is 2
Giving us 3142. If you manually list out the permutations using DFS method, it would be 3142. Done! It really was all about pattern finding.
1 public class Solution { 2 public String getPermutation(int n, int k) { 3 List<Integer> numberList = new ArrayList<>(); 4 for (int i = 1; i <= n; i++) { 5 numberList.add(i); 6 } 7 k--; 8 int factorial = calculateFactorial(n); 9 StringBuilder sb = new StringBuilder(); 10 for (int i = 0; i < n; i++) { 11 factorial = factorial / (n - i); // remove 1 number from group 12 int curIndex = k / factorial; // find the right number(curIndex) of 13 sb.append(numberList.get(curIndex)); // get number according to curIndex 14 numberList.remove(curIndex); // remove from list 15 k = k % factorial; // update k 16 } 17 return sb.toString(); 18 } 19 20 private int calculateFactorial(int n) { 21 int result = 1; 22 for (int i = 1; i <= n; i++) { 23 result = result * i; 24 } 25 return result; 26 } 27 }

浙公网安备 33010602011771号