POJ 1584 计算几何 凸包

链接:

http://poj.org/problem?id=1584

题意:

按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包。

再给定一个圆形(圆心坐标和半径),判断这个圆是否完全在n变形内部。

题解:

1、判断凸包convex():

   由于点集已经按某个时针方向有序,因此可以先定义一个方向系数dir=0

   两两枚举n边形的边,用叉积判断这两条边的转向(右螺旋或左螺旋),由于存在散点共线的情况,因此当且仅当叉积的值t第一次不为0时,dir=t,dir的值此后不再改变。(dir>0 则为右螺旋逆时针,dir<0则为左螺旋顺时针)

   此后继续枚举剩下的边,只要判断dir*t>=0即可,当存在一个dir*t<0的边,说明这是凹多边形,就不是凸包了。

2、判断圆心在不在凸包内contain()

3、当圆心在凸包内时,判断距离是否都大于半径fit()

代码:

  1 #include <map>
  2 #include <set>
  3 #include <cmath>
  4 #include <queue>
  5 #include <stack>
  6 #include <cstdio>
  7 #include <string>
  8 #include <vector>
  9 #include <cstdlib>
 10 #include <cstring>
 11 #include <sstream>
 12 #include <iostream>
 13 #include <algorithm>
 14 #include <functional>
 15 using namespace std;
 16 #define rep(i,a,n) for (int i=a;i<n;i++)
 17 #define per(i,a,n) for (int i=n-1;i>=a;i--)
 18 #define all(x) (x).begin(),(x).end()
 19 #define pb push_back
 20 #define mp make_pair
 21 #define lson l,m,rt<<1  
 22 #define rson m+1,r,rt<<1|1 
 23 typedef long long ll;
 24 typedef vector<int> VI;
 25 typedef pair<int, int> PII;
 26 const ll MOD = 1e9 + 7;
 27 const int INF = 0x3f3f3f3f;
 28 const int MAXN = 1010;
 29 // head
 30 
 31 const double eps = 1e-8;
 32 int cmp(double x) {
 33     if (fabs(x) < eps) return 0;
 34     if (x > 0) return 1;
 35     return -1;
 36 }
 37 
 38 const double pi = acos(-1);
 39 inline double sqr(double x) {
 40     return x*x;
 41 }
 42 struct point {
 43     double x, y;
 44     point() {}
 45     point(double a, double b) :x(a), y(b) {}
 46     void input() {
 47         scanf("%lf%lf", &x, &y);
 48     }
 49     friend point operator+(const point &a, const point &b) {
 50         return point(a.x + b.x, a.y + b.y);
 51     }
 52     friend point operator-(const point &a, const point &b) {
 53         return point(a.x - b.x, a.y - b.y);
 54     }
 55     friend point operator*(const double &a, const point &b) {
 56         return point(a*b.x, a*b.y);
 57     }
 58     friend point operator/(const point &a, const double &b) {
 59         return point(a.x / b, a.y / b);
 60     }
 61     double norm() {
 62         return sqrt(sqr(x) + sqr(y));
 63     }
 64 };
 65 double det(point a, point b) {
 66     return a.x*b.y - a.y*b.x;
 67 }
 68 double dot(point a, point b) {
 69     return a.x*b.x + a.y*b.y;
 70 }
 71 double dist(point a, point b) {
 72     return (a - b).norm();
 73 }
 74 
 75 struct line {
 76     point a, b;
 77     line() {}
 78     line(point x, point y) :a(x), b(y) {}
 79 };
 80 double dis_point_segment(point p, point s, point t) {
 81     if (cmp(dot(p - s, t - s)) < 0) return (p - s).norm();
 82     if (cmp(dot(p - t, s - t)) < 0) return (p - t).norm();
 83     return fabs(det(s - p, t - p) / dist(s, t));
 84 }
 85 bool point_on_segment(point p, point s, point t) {
 86     return cmp(det(p - s, t - s)) == 0 && cmp(dot(p - s, p - t)) <= 0;
 87 }
 88 bool parallel(line a, line b) {
 89     return !cmp(det(a.a - a.b, b.a - b.b));
 90 }
 91 bool line_make_point(line a, line b,point &res) {
 92     if (parallel(a, b)) return false;
 93     double s1 = det(a.a - b.a, b.b - b.a);
 94     double s2 = det(a.b - b.a, b.b - b.a);
 95     res = (s1*a.b - s2*a.a) / (s1 - s2);
 96     return true;
 97 }
 98 
 99 int n;
100 double r;
101 point o;
102 point *p;
103 
104 bool convex() {
105     int dir = 0;
106     rep(i, 0, n) {
107         int t = cmp(det(p[i + 1] - p[i], p[i + 2] - p[i + 1]));
108         if (!dir) dir = t;
109         if (dir*t < 0) return false;
110     }
111     return true;
112 }
113 
114 bool contain() {
115     int sign = 0;
116     rep(i, 0, n) {
117         int x = cmp(det(p[i] - o, p[i + 1] - o));
118         if (x) {
119             if (sign && sign != x) return false;
120             else sign = x;
121         }
122     }
123     return true;
124 }
125 
126 bool fit() {
127     rep(i, 0, n) {
128         int k = cmp(dis_point_segment(o, p[i], p[i + 1]) - r);
129         if (k < 0) return false;
130     }
131     return true;
132 }
133 
134 int main() {
135     while (cin >> n && n != 1) {
136         cin >> r;
137         o.input();
138         p = new point[n + 2];
139         rep(i, 1, n + 1) p[i].input();
140         p[0] = p[n];
141         p[n + 1] = p[1];
142         if(!convex()) cout << "HOLE IS ILL-FORMED" << endl;
143         else {
144             bool fg1 = contain();
145             bool fg2 = fit();
146             if (fg1 && fg2) cout << "PEG WILL FIT" << endl;
147             else cout << "PEG WILL NOT FIT" << endl;
148         }
149         delete p;
150     }
151     return 0;
152 }

 

posted @ 2017-04-18 22:35  Flowersea  阅读(263)  评论(0)    收藏  举报