import java.math.BigInteger;
import java.util.Scanner;
public class CalculateN {
/**
* @param args
*/
public static void main(String[] args) {
System.out.print("������N��");
Scanner scanner=new Scanner(System.in);
int number=scanner.nextInt();
System.out.println(number+"!="+calculateN2(number));
}
public static long calculateN(int n) {
if(n==1 || n==0){
return 1;
}
return n*calculateN(n-1);
}
public static BigInteger calculateN2(int n) {
if(n==1 || n==0){
return BigInteger.valueOf(1);
}
return BigInteger.valueOf(n).multiply(calculateN2((n-1)));
}
}
public class CompareFloatNumber {
/**
* @param args
*/
public static void main(String[] args) {
//compare();
compare2();
}
private static void compare() {
double i = 0.0001;
double j = 0.00010000000000000001;
System.out.println(i==j); //�����true
}
private static void compare2() {
double i = 0.0001;
double j = 0.00010000000000000001;
if(Math.abs(i-j)<1e-10){
System.out.println("true");
}
else
{
System.out.println("false");
}
}
}
// MethodOverload.java
// Using overloaded methods
public class MethodOverload {
public static void main(String[] args) {
System.out.println("The square of integer 7 is " + square(7));
System.out.println("\nThe square of double 7.5 is " + square(7.5));
}
public static int square(int x) {
return x * x;
}
public static double square(double y) {
return y * y;
}
}
// RandomInt.java
// Shifted, scaled random integers
import javax.swing.JOptionPane;
public class RandomInt {
public static void main( String args[] )
{
int value;
String output = "";
for ( int i = 1; i <= 20; i++ ) {
value = 1 + (int) ( Math.random() * 6 );
output += value + " ";
if ( i % 5 == 0 )
output += "\n";
}
JOptionPane.showMessageDialog( null, output,
"20 Random Numbers from 1 to 6",
JOptionPane.INFORMATION_MESSAGE );
System.exit( 0 );
}
}
// RollDie.java
// Roll a six-sided die 6000 times
import javax.swing.*;
public class RollDie {
public static void main( String args[] )
{
int frequency1 = 0, frequency2 = 0,
frequency3 = 0, frequency4 = 0,
frequency5 = 0, frequency6 = 0, face;
// summarize results
for ( int roll = 1; roll <= 6000; roll++ ) {
face = 1 + (int) ( Math.random() * 6 );
switch ( face ) {
case 1:
++frequency1;
break;
case 2:
++frequency2;
break;
case 3:
++frequency3;
break;
case 4:
++frequency4;
break;
case 5:
++frequency5;
break;
case 6:
++frequency6;
break;
}
}
JTextArea outputArea = new JTextArea( 7, 10 );
outputArea.setText(
"Face\tFrequency" +
"\n1\t" + frequency1 +
"\n2\t" + frequency2 +
"\n3\t" + frequency3 +
"\n4\t" + frequency4 +
"\n5\t" + frequency5 +
"\n6\t" + frequency6 );
JOptionPane.showMessageDialog( null, outputArea,
"Rolling a Die 6000 Times",
JOptionPane.INFORMATION_MESSAGE );
System.exit( 0 );
}
}
public class SquareInt {
public static void main(String[] args) {
int result;
for (int x = 1; x <= 10; x++) {
result = square(x);
// Math����Ҳ�ṩ����ƽ�����ķ���
// result=(int)Math.pow(x,2);
System.out.println("The square of " + x + " is " + result + "\n");
}
}
// �Զ�����ƽ�����ľ�̬����
public static int square(int y) {
return y * y;
}
}
public class TestMath
{
public static void main(String[] args)
{
/*---------��������������---------*/
//������ת���Ƕ�
System.out.println("Math.toDegrees(1.57)��" + Math.toDegrees(1.57));
//���Ƕ�ת��Ϊ����
System.out.println("Math.toRadians(90)��" + Math.toRadians(90));
//���㷴���ң����صĽǶȷ�Χ�� 0.0 �� pi ֮�䡣
System.out.println("Math.acos(0.3)��" + Math.acos(1.2));
//���㷴���ң����صĽǶȷ�Χ�� -pi/2 �� pi/2 ֮�䡣
System.out.println("Math.asin(0.8)��" + Math.asin(0.8));
//���㷴���У����صĽǶȷ�Χ�� -pi/2 �� pi/2 ֮�䡣
System.out.println("Math.atan(2.3)��" + Math.atan(2.3));
//�����������ҡ�
System.out.println("Math.cos(1.57)��" + Math.cos(1.57));
//����ֵ��˫�����ҡ�
System.out.println("Math.cosh(1.2 )��" + Math.cosh(1.2 ));
//��������
System.out.println("Math.sin(1.57 )��" + Math.sin(1.57 ));
//����˫������
System.out.println("Math.sinh(1.2 )��" + Math.sinh(1.2 ));
//������������
System.out.println("Math.tan(0.8 )��" + Math.tan(0.8 ));
//����˫������
System.out.println("Math.tanh(2.1 )��" + Math.tanh(2.1 ));
//���������� (x, y) ת���ɼ����� (r, thet));���������ý� theta��
System.out.println("Math.atan2(0.1, 0.2)��" + Math.atan2(0.1, 0.2));
/*---------������ȡ������---------*/
//ȡ��������С��Ŀ���������������
System.out.println("Math.floor(-1.2 )��" + Math.floor(-1.2 ));
//ȡ�������ش���Ŀ��������С������
System.out.println("Math.ceil(1.2)��" + Math.ceil(1.2));
//��������ȡ��
System.out.println("Math.round(2.3 )��" + Math.round(2.3 ));
/*---------�����dz˷���������ָ������---------*/
//����ƽ������
System.out.println("Math.sqrt(2.3 )��" + Math.sqrt(2.3 ));
//������������
System.out.println("Math.cbrt(9)��" + Math.cbrt(9));
//����ŷ���� e ��n���ݡ�
System.out.println("Math.exp(2)��" + Math.exp(2));
//���� sqrt(x2��" +y2)��û���м���������硣
System.out.println("Math.hypot(4 , 4)��" + Math.hypot(4 , 4));
// ���� IEEE 754 ���Ĺ涨�����������������������㡣
System.out.println("Math.IEEEremainder(5 , 2)��" + Math.IEEEremainder(5 , 2));
//����˷�
System.out.println("Math.pow(3, 2)��" + Math.pow(3, 2));
//������Ȼ����
System.out.println("Math.log(12)��" + Math.log(12));
//�������Ϊ 10 �Ķ�����
System.out.println("Math.log10(9)��" + Math.log10(9));
// �ز����� 1 ֮�͵���Ȼ������
System.out.println("Math.log1p(9)��" + Math.log1p(9));
/*---------�����Ƿ�����ص�����---------*/
//�������ֵ��
System.out.println("Math.abs(-4.5)��" + Math.abs(-4.5));
//���Ÿ�ֵ�����ش��еڶ������������ŵĵ�һ�����������
System.out.println("Math.copySign(1.2, -1.0)��" + Math.copySign(1.2, -1.0));
//���ź������������Ϊ 0���� 0������������� 0���� 1.0���������С�� 0���� -1.0��
System.out.println("Math.signum(2.3)��" + Math.signum(2.3));
/*---------�����Ǵ�С��ص���������---------*/
//�ҳ����ֵ
System.out.println("Math.max(2.3 , 4.5)��" + Math.max(2.3 , 4.5));
//������Сֵ
System.out.println("Math.min(1.2 , 3.4)��" + Math.min(1.2 , 3.4));
//���ص�һ�������͵ڶ�������֮�����һ���������ڵĸ�������
System.out.println("Math.nextAfter(1.2, 1.0)��" + Math.nextAfter(1.2, 1.0));
//���ر�Ŀ�����Դ�ĸ�����
System.out.println("Math.nextUp(1.2 )��" + Math.nextUp(1.2 ));
//����һ��α���������ֵ���ڵ��� 0.0 ��С�� 1.0��
System.out.println("Math.random()��" + Math.random());
}
}
import java.util.*;
public class TestRandom
{
public static void main(String[] args)
{
Random rand = new Random();
System.out.println("rand.nextBoolean()��" + rand.nextBoolean());
byte[] buffer = new byte[16];
rand.nextBytes(buffer);
System.out.println(Arrays.toString(buffer));
//����0.0~1.0֮���α���double��
System.out.println("rand.nextDouble()��" + rand.nextDouble());
//����0.0~1.0֮���α���float��
System.out.println("rand.nextFloat()��" + rand.nextFloat());
//����ƽ��ֵ�� 0.0�������� 1.0��α��˹��
System.out.println("rand.nextGaussian()��" + rand.nextGaussian());
//����һ������long����ȡֵ��Χ��α�������
System.out.println("rand.nextInt()��" + rand.nextInt());
//����0~26֮���α�������
System.out.println("rand.nextInt(26)��" + rand.nextInt(26));
//����һ������long����ȡֵ��Χ��α�������
System.out.println("rand.nextLong()��" + rand.nextLong());
}
}
import java.util.Random;
public class TestSeed
{
public static void main(String[] args)
{
Random r1 = new Random(50);
System.out.println("��һ������Ϊ50��Random����");
System.out.println("r1.nextBoolean():\t" + r1.nextBoolean());
System.out.println("r1.nextInt():\t\t" + r1.nextInt());
System.out.println("r1.nextDouble():\t" + r1.nextDouble());
System.out.println("r1.nextGaussian():\t" + r1.nextGaussian());
System.out.println("---------------------------");
Random r2 = new Random(50);
System.out.println("�ڶ�������Ϊ50��Random����");
System.out.println("r2.nextBoolean():\t" + r2.nextBoolean());
System.out.println("r2.nextInt():\t\t" + r2.nextInt());
System.out.println("r2.nextDouble():\t" + r2.nextDouble());
System.out.println("r2.nextGaussian():\t" + r2.nextGaussian());
System.out.println("---------------------------");
Random r3 = new Random(100);
System.out.println("����Ϊ100��Random����");
System.out.println("r3.nextBoolean():\t" + r3.nextBoolean());
System.out.println("r3.nextInt():\t\t" + r3.nextInt());
System.out.println("r3.nextDouble():\t" + r3.nextDouble());
System.out.println("r3.nextGaussian():\t" + r3.nextGaussian());
Random r4 = new Random(System.currentTimeMillis());
System.out.println("�Ե�ǰʱ��Ϊ���ӵ�Random����");
System.out.println("r3.nextBoolean():\t" + r4.nextBoolean());
System.out.println("r3.nextInt():\t\t" + r4.nextInt());
System.out.println("r3.nextDouble():\t" + r4.nextDouble());
System.out.println("r3.nextGaussian():\t" + r4.nextGaussian());
}
}
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class VariableArgumentsTest{
public static double max(double...values)
{
double largest=Double.MIN_VALUE;
for (double v:values)
if(v>largest) largest=v;
return largest;
}
public static void main(String args[]) {
System.out.println("Max:"+max(1,11,300,2,3));
}
}
// TowersOfHanoi.java
// Towers of Hanoi solution with a recursive method.
public class TowersOfHanoi
{
// recursively move disks between towers
public static void solveTowers( int disks, int sourcePeg,
int destinationPeg, int tempPeg )
{
// base case -- only one disk to move
if ( disks == 1 )
{
System.out.printf( "\n%d --> %d", sourcePeg, destinationPeg );
return;
} // end if
// recursion step -- move (disk - 1) disks from sourcePeg
// to tempPeg using destinationPeg
solveTowers( disks - 1, sourcePeg, tempPeg, destinationPeg );
// move last disk from sourcePeg to destinationPeg
System.out.printf( "\n%d --> %d", sourcePeg, destinationPeg );
// move ( disks - 1 ) disks from tempPeg to destinationPeg
solveTowers( disks - 1, tempPeg, destinationPeg, sourcePeg );
} // end method solveTowers
public static void main( String[] args )
{
int startPeg = 1; // value 1 used to indicate startPeg in output
int endPeg = 3; // value 3 used to indicate endPeg in output
int tempPeg = 2; // value 2 used to indicate tempPeg in output
int totalDisks = 3; // number of disks
// initial nonrecursive call: move all disks.
solveTowers( totalDisks, startPeg, endPeg, tempPeg );
} // end main
} // end class TowersOfHanoi