bzoj1025 [SCOI2009]游戏

Description

windy学会了一种游戏。对于\(1\)\(N\)\(N\)个数字,都有唯一且不同的\(1\)\(N\)的数字与之对应。最开始windy把数字按顺序\(1\)\(2\)\(3\),……,\(N\)写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们对应的数字。如此反复,直到序列再次变为\(1\)\(2\)\(3\),……,\(N\)
如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6
windy的操作如下
1 2 3 4 5 6
2 3 1 5 4 6
3 1 2 4 5 6
1 2 3 5 4 6
2 3 1 4 5 6
3 1 2 5 4 6
1 2 3 4 5 6
这时,我们就有若干排\(1\)\(N\)的排列,上例中有\(7\)排。现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。

Input

包含一个整数\(N\),\(1 \leqslant N \leqslant 1000\)

Output

包含一个整数,可能的排数。

Sample Input

【输入样例一】
3
【输入样例二】
10

Sample Output

【输出样例一】
3
【输出样例二】
16

Solution

综合性较强的题!考虑建图。若\(x\)可以变换为\(y\),则从\(x\)\(y\)连一条边,显然每个点入度\(=\)出度\(=1\)。推一下,变换次数\(=lcm(\)各个环的大小\()\)。那么原题就变成了,\(k\)个正整数,和为\(n\),求他们的$ans = \(最小公倍数的数目。\)k$不固定,不易处理。设ans = p1^a1* p2^a2* ..* pmam是否是n的一个可行答案。我们有以下结论:若p1a1+p2a2+...+pmam<=n,则ans=p1a1*p2a2..pm^am是n的一个可行答案。这个结论我是口胡出来的,并不会证明。大家想看证明的话可以看这里
有了这个结论,我们就可以dp了。dp详见代码。

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

inline int read() {
	int x = 0, flag = 1; char ch = getchar();
	while (ch > '9' || ch < '0') { if (ch == '-') flag = -1; ch = getchar(); }
	while (ch <= '9' && ch >= '0') { x = x * 10 + ch - '0'; ch = getchar(); }
	return x * flag;
}
inline void write(int x) { if (x > 10) write(x / 10); putchar(x % 10 + '0'); }

#define N 1050
#define rep(ii, aa, bb) for (int ii = aa; ii <= bb; ii++)
#define fech(i, x) for (int i = 0; i < x.size(); i++)
#define ull unsigned long long

int p[N], id;
bool vis[N];
ull f[N][N];
void prepare() {
	vis[1] = 1;
	rep(i, 2, 1000) if (!vis[i]) {
		p[++id] = i;
		for (int j = i * i; j <= 1000; j += i) vis[j] = 1;
 	}
}

int main() {
	prepare();
	int n = read();
	rep(i, 0, id) f[i][0] = 1;
	rep(j, 1, n) f[0][j] = 1;
	rep(i, 1, id)
		rep(j, 1, n) {
			f[i][j] = f[i - 1][j];
			for (int k = p[i]; k <= j; k *= p[i])
				f[i][j] += f[i - 1][j - k];
		}
	cout << f[id][n];
	return 0;
}
posted @ 2018-02-05 09:27  aziint  阅读(84)  评论(0编辑  收藏  举报
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.