Codeforces Round #630 (Div. 2) 题解 (AEF)

比赛链接:https://codeforces.com/contest/1332

A. Exercising Walk

只要考虑最终位置是否在范围内,和特判 \(x_1=x_2\) 或者 \(y_1=y_2\) 的情况即可

#include <bits/stdc++.h>
using namespace std;
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
typedef long long ll;
ll t,a,b,c,d,x,y,x1,y1,x2,y2;
signed main(){
	cin>>t;
	while(t--){
		cin>>a>>b>>c>>d>>x>>y>>x1>>y1>>x2>>y2;
		int ans=(x1<=x-a+b && x-a+b<=x2
			&& y1<=y-c+d && y-c+d<=y2);
		if(a!=0 && x1==x2)ans=0;
		if(c!=0 && y1==y2)ans=0;
		cout<<(ans?"Yes":"No")<<endl;
	}
	return 0;
}

BCD我不会(大雾)

E. Height All the Same

高度限制在 \([l,r]\) 内,其实和 \([0,r-l]\) 是一样的,这样对问题稍微简化了一下

接下来讨论第一个情况,如果 \(nm\) 是奇数,我们发现无论初始方块堆成什么样都满足要求,因此此时答案是 \((r-l+1)^{nm}\)

第二种情况复杂很多,如果 \(nm\) 是偶数,我们发现所有初始方块中大约有一半是满足要求的,因此答案大约是 \(\dfrac {(r-l+1)^{nm}}{2}\),然后发现有时候除不尽,于是变形成 \(\lceil\dfrac {(r-l+1)^{nm}}{2}\rceil\) ,一交,ac(此处%zkx,太强了)

(ps:\(\lceil x \rceil=\) 大于等于 \(x\) 的最小整数)

接下来我来证明一下这个公式为什么是对的

\(h={r-l+1}\),因为放两个方块不改变方块总数的奇偶性,所以有以下结论:满足要求当且仅当 放了奇数个方块的位置个数 是偶数个(重要定理

对一个位置,放奇数个方块有 \(\lfloor \dfrac h 2\rfloor\) 个方式,放偶数个方块有 \(\lceil \dfrac h 2\rceil\)

我们令 \(a=\lfloor \dfrac h 2\rfloor\)\(b=\lceil \dfrac h 2\rceil\)\(x=\) 放了奇数个方块的位置个数,那么放了偶数个方块的位置个数为 \(nm-x\)

因此所有方案数(不考虑总方块数是否为偶数)为 \(h^{nm}=\sum\limits_{x=0}^{nm}C_{nm}^x a^x b^{nm-x}\)(右式既可以二项式定理展开,也可以手推出来,怎么推的我不讲了)

根据重要定理,我们发现放了奇数个方块的位置个数(就是 \(x\))是偶数的时候才对答案有贡献,因此

\(ans=\sum\limits_{x=0..nm 且 x 是偶数}C_{nm}^x a^x b^{nm-x}\)

又因为叉哥牛逼(此处%叉哥),我们发现如果对 \((a+b)^{nm}+(a-b)^{nm}\) 两个幂二项式展开,所有 \(nm-x\) 是奇数的项都会消掉,只剩下两倍的 \(nm-x\) 是偶数的项之和,我们需要的正好是 \(x\) 是偶数的项之和,这不是一回事吗.jpg

所以答案化简为 \(ans=\dfrac {(a+b)^{nm}+(a-b)^{nm}}{2}=\dfrac {h^{nm}+(a-b)^{nm}}{2}\),如果 \(a=b\)\(ans=\dfrac {h^{nm}}2\),如果 \(a=b-1\)\(ans=\dfrac{h^{nm}+1}{2}\),这个形式正好等价于 \(\lceil\dfrac {(r-l+1)^{nm}}{2}\rceil\),证毕

#include <bits/stdc++.h>
using namespace std;
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
//mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count());
typedef long long ll;
const ll mod=(0?1000000007:998244353); ll mul(ll a,ll b,ll m=mod){return a*b%m;} ll qpow(ll a,ll b,ll m=mod){ll ans=1; for(;b;a=mul(a,a,m),b>>=1)if(b&1)ans=mul(ans,a,m); return ans;} ll getinv(ll v,ll m=mod){return qpow(v,m-2,m);}
ll n,m,l,r;
signed main(){
	cin>>n>>m>>l>>r;
	ll h=r-l+1;
	if(n*m%2==1){
		cout<<qpow(h,n*m)<<endl;
	}
	else{
		cout<<(qpow(h,n*m)+(h%2==1))*getinv(2)%mod<<endl;
	}
	return 0;
}

F. Independent Set

遇到树上计数问题,还是独立集相关的,果断考虑树型dp

首先我们不考虑删边的情况。独立集其实就要求染色的所有点两两不相邻,也就是说如果一个点染色了,它只能连接不染色的点(乘以儿子不染色的状态数),如果一个点不染色,它想怎么连接就怎么连接(乘以儿子染色的状态数加不染色的状态数)

也就是以 \(u\) 为根的子树中,令 \(col[u]\)\(u\) 染色的状态数,\(uncol[u]\)\(u\) 不染色的状态数,状态转移方程是

\(col[u]=\prod\limits_{v∈son(u)}uncol[v]\\uncol[u]=\prod\limits_{v∈son(u)}(col[v]+uncol[v])\)

当然这是不删边的情况

如果考虑删边,我们要多加一个状态 \(del[u]\) 表示 \(u\) 被删掉了。三个状态,染色、不染色、删掉,清晰如我,注意删掉其实可以复活(下面会解释)

接下来分别讨论三个状态


如果点 \(u\) 被染色了,对于它的儿子 \(v\),它可以选择不连 \(v\)(这时候 \(v\) 长什么样都可,\(col[v]+uncol[v]+del[v]\)),也可以选择连 \(v\)(这时候 \(v\) 不能是染色状态,如果 \(v\) 是不染色状态,完全可以,\(uncol[v]\);如果 \(v\) 是删除状态,其实意思是让 \(v\) 复活,只要 \(v\) 不染色即可,\(del[v]\)

转移方程 \(col[u]=\prod\limits_{v∈son(u)}(col[v]+2uncol[v]+2del[v])-del[u]\)

(至于为什么 \(\Pi\) 外要减去 \(del[u]\) 呢,因为 \(u\) 的边全部删掉后 \(u\) 就是删除状态了不是染色状态,所以要减一下)


如果点 \(u\) 不染色,对于它的儿子 \(v\),它可以选择不连 \(v\)(这时候 \(v\) 长什么样都可\(col[v]+uncol[v]+del[v]\)),也可以选择连 \(v\)(这时候 \(v\) 可以染色or不染色,\(col[v]+uncol[v]\),也可以让删除的 \(v\) 复活,这时候 \(v\) 也是可以染色or不染色,\(2del[v]\)

转移方程 \(uncol[u]=\prod\limits_{v∈son(u)}(2col[v]+2uncol[v]+3del[v])-del[u]\)

(这里减去的 \(del[u]\) 也是同样的)


如果点 \(u\) 删除,那么再怎么说都不连 \(v\) 了,所以直接 \(col[v]+uncol[v]+del[v]\)

转移方程 \(del[u]=\prod\limits_{v∈son(u)}(col[v]+uncol[v]+del[v])\)


最后答案是根节点的 \(col+uncol+del-1\),减1是为了排除所有点都被删除的情况

#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
#define vector basic_string
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=300010; typedef long long ll; ll read(){ll x; if(scanf("%lld",&x)==-1)exit(0); return x;}
const int mod=(0?1000000007:998244353);
ll col[N],uncol[N],del[N],vis[N];
vector<int> a[N];
#define M(x) ((x)%mod)
void dfs(int x){
	vis[x]=1;
	col[x]=uncol[x]=del[x]=1;
	for(auto p:a[x])
	if(!vis[p]){
		dfs(p);
		col[x]=col[x]*M(col[p]+2*uncol[p]+2*del[p])%mod;
		uncol[x]=uncol[x]*M(2*col[p]+2*uncol[p]+3*del[p])%mod;
		del[x]=del[x]*M(col[p]+uncol[p]+del[p])%mod;
	}
	col[x]=(col[x]-del[x])%mod;
	uncol[x]=(uncol[x]-del[x])%mod;
}
signed main(){
	int n=read();
	repeat(i,0,n-1){
		int x=read()-1,y=read()-1;
		a[x]+=y; a[y]+=x;
	}
	dfs(0);
	cout<<((col[0]+uncol[0]+del[0]-1)%mod+mod)%mod<<endl;
	return 0;
}
posted @ 2020-04-01 16:21  axiomofchoice  阅读(...)  评论(...编辑  收藏