键树 B树 B+树

 

 

 

 

键树又称为数字查找树(Digital Search Tree)或Trie树(trie为retrieve中间4个字符),其结构受启发于一部大型字典的“书边标目”。字典中标出首字母是 A,B,C,....Z的单词所在页,再对各部分标出第二字母为A,B,C,...Z的单词所在的页, ....等等。
1:键树的定义
  键树是一种特殊的查找树,它的某个节点不是包含一个或多个关键字,而是只包含组成关键字的一部分(字符或数字),比如:如果关键字是数值,则节点中只包含一个数位;如果关键字是单词,则节点中只包含一个字母字符。
  2:键树的存储
  键树的存储通常有两种方式:
  (1)双链树表示
  如果以树的孩子兄弟表示,则每个节点包含3个域。
  A: symbol域: 存储关键字的一个字符
  B: son域: 存储指向第一棵子树的根的指针,叶子节点的son域指向该关键字记录的指针
  C: brother域: 存储指向右兄弟的指针.
  这时的键树又称为双链树.
  //双链树的存储表示
  typedef struct DULNode{
  char symbol; //结点字符域
  struct DULNode *son, *brother; //son指向子树根结点,brother指向右兄弟结点.
  }DULNode ,*DLTree;
  (2) 多重链表表示
   如果以树的多重链表表示键树, 则树的每个结点中应包含d个(d为关键字符的基,如:字符集由英文大写字母构成时,则d=26+1=27)指针域,此时的键树又称为Trie树。如果从键 树中某个结点到叶子结点的路径上每个结点都只有一个孩子,则可以将该路径上的所有结点压缩为一个“叶子结点”,且在该叶子结点中存储关键字及指向记录的指 针等信息。
  以上数据结构很容易让人联想到电话号码,如果关键字的取值为[0,9],则很容易用来处理像电话号码这类的数据。如果目前固定电话的长度算8位的话,那查找的的时间复杂度为常数8。
  计费系统中的用户资料在计费过程中使用非常频繁,如果id作为关键字的键树算法的话,将大大的提高查询速度。
  下面是它的实现代码 

 

 

---------------------------------------------------------------------------------

  先弄清楚以下几个概念:关键字、主关键字、次关键字的含义;静态查找与动态查找的含义及区别;平均查找长度ASL的概念及在各种查找算法中的计算方法和计算结果,特别是一些典型结构的ASL值,应该记住。

  一般将search分为三类:在顺序表上的查找;在树表上的查找;在哈希表上的查找。

  (1) 线性表上的查找:

  主要分为三种线性结构:

  顺序表——传统查找方法:逐个比较;

  有序顺序表——二分查找法(注意适用条件以及其递归实现方法);

  索引顺序表——对索引结构,采用索引查找算法。注意这三种表下的ASL值以及三种算法的实现。

  (2) 树表上的查找:

  树表主要分为以下几种:二叉排序树(即二叉查找树),平衡二叉查找树(AVL树),B树,键树。其中,尤以前两种结构为重,也有部分名校偏爱考B树的。由于二叉排序树与平衡二叉树是一种特殊的二叉树。

  二叉排序树,简言之,就是“左小右大”,它的中序遍历结果是一个递增的有序序列。平衡二叉排序树是二叉排序树的优化,其本质也是一种二叉排序 树,只不过,平衡排序二叉树对左右子树的深度有了限定:深度之差的绝对值不得大于1。对于二叉排序树,“判断某棵二叉树是否二叉排序树”这一算法经常被考 到,可用递归,也可以用非递归。平衡二叉树的建立也是一个常考点,但该知识点归根结底还是关注的平衡二叉树的四种调整算法,调整的一个参照是:调整前后的 中序遍历结果相同。

  B树是二叉排序树的进一步改进,也可以把B树理解为三叉、四叉....排序树。除B树的查找算法外,应该特别注意一下B树的插入和删除算法,因为这两种算法涉及到B树结点的分裂和合并,是一个难点。 键树(keywordtree),又

 

8、查找(search)

 

  索引顺序表——对索引结构,采用索引查找算法。注意这三种表下的ASL值以及三种算法的实现。

  (2) 树表上的查找:

  树表主要分为以下几种:二叉排序树(即二叉查找树),平衡二叉查找树(AVL树),B树,键树。其中,尤以前两种结构为重,也有部分名校偏爱考B树的。由于二叉排序树与平衡二叉树是一种特殊的二叉树。

  二叉排序树,简言之,就是“左小右大”,它的中序遍历结果是一个递增的有序序列。平衡二叉排序树是二叉排序树的优化,其本质也是一种二叉排序 树,只不过,平衡排序二叉树对左右子树的深度有了限定:深度之差的绝对值不得大于1。对于二叉排序树,“判断某棵二叉树是否二叉排序树”这一算法经常被考 到,可用递归,也可以用非递归。平衡二叉树的建立也是一个常考点,但该知识点归根结底还是关注的平衡二叉树的四种调整算法,调整的一个参照是:调整前后的 中序遍历结果相同。

  B树是二叉排序树的进一步改进,也可以把B树理解为三叉、四叉....排序树。除B树的查找算法外,应该特别注意一下B树的插入和删除算法,因 为这两种算法涉及到B树结点的分裂和合并,是一个难点。 键树(keywordtree),又称数字搜索树(digitalsearch tree)或字符树。trie树也可说等同于键树或属于键树的一种。键树特别适用于查找英文单词的场合。一般不要求能完整描述算法源码,多是根据算法思想 建立键树及描述其大致查找过程。

  (3) 基于哈希表的查找算法:

  哈希译自“hash”一词,意为“散列”或“杂凑”。哈希表查找的基本思想是:根据当前待查找数据的特征,以记录关键字为自变量,设计一个 function,该函数对关键字进行转换后,其解释结果为待查的地址。基于哈希表的考查点有:哈希函数的设计,冲突解决方法的选择及冲突处理过程的描 述。

 --------------------------------------------------------------------------------------------------------

还有各种树(B):

 

B

       即二叉搜索树:

       1.所有非叶子结点至多拥有两个儿子(LeftRight);

       2.所有结点存储一个关键字;

       3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

       如:

       

       B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

       如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

       如:

      

   但B树在经过多次插入与删除后,有可能导致不同的结构:

   右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;      

       实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略;

 

B-

       是一种多路搜索树(并不是二叉的):

       1.定义任意非叶子结点最多只有M个儿子;且M>2

       2.根结点的儿子数为[2, M]

       3.除根结点以外的非叶子结点的儿子数为[M/2, M]

       4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

       5.非叶子结点的关键字个数=指向儿子的指针个数-1

       6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1]

       7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

       8.所有叶子结点位于同一层;

       如:(M=3

       B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性:

       1.关键字集合分布在整颗树中;

       2.任何一个关键字出现且只出现在一个结点中;

       3.搜索有可能在非叶子结点结束;

       4.其搜索性能等价于在关键字全集内做一次二分查找;

       5.自动层次控制;

       由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:

    

       其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

       所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

       由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

 

B+

       B+树是B-树的变体,也是一种多路搜索树:

       1.其定义基本与B-树同,除了:

       2.非叶子结点的子树指针与关键字个数相同;

       3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

       5.为所有叶子结点增加一个链指针;

       6.所有关键字都在叶子结点出现;

       如:(M=3

   B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

       B+的特性:

       1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

       2.不可能在非叶子结点命中;

       3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

       4.更适合文件索引系统;

  

B*

       B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

   B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

       B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

       B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

       所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

  

小结

       B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;

       B-树:多路搜索树,每个结点存储M/2M个关键字,非叶子结点存储指向关键字范围的子结点;

       所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

       B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

       B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3

 

 原文地址 http://blog.csdn.net/manesking/archive/2007/02/09/1505979.aspx
 

 

 

 

 

2011.5.5

 

Hash是一种特殊的算法,MD5就是其中常用的一种。它的算法的特征是不可逆性,并且才计算的时候所有的数据都参与了运算,其中任何一个数据变化了都会导致计算出来的Hash值完全不同,所以通常用来校验数据是否正确或用作身份验证。
常见的,论坛里面用户的密码是经过MD5等Hash算法算出来的Hash值进行保存的。
在通常的网络下载中,会带有一个Hash值,这个值是用来校验你下载的文件是否损坏并保证尚未被别人篡改的。

 

Hash算法不管是MD5也好SHA1也好. 他们都是一种散列算法,其算法的特点是,可以把任意长度的字符串经过运算生成固定长度的字符串,并且这个产生的字符串代表着原来字符串里的所有字符。

 

构建高性能Web站点:

数据库的前端缓存区,读缓存区,写缓存区

使用memcached来存储动态内容的页面缓存

Key-value结构

为了实现高速缓存,我们不会将缓存内容放在磁盘上,那样将会毫无意义,基于这个原则,memcached使用物理内容来作为缓存区。

memcached使用key-value的方式来存储数据,这是一种单索引的结构化数据组织形式,我们将每个key对应的value合起来称为数据项,所有的数据项之间彼此独立,每个数据项都以key作为唯一索引,你可以通过key来读取或者更新这个数据项。在稍具规模的应用中,缓存的数据项可能会非常多,足够达到天文数字,为了在内存中为如此之多的数据项提供高速的查找,memcached使用了高效的基于keyhash算法来设计存储数据结构,并且使用了精心设计的内存分配器,它们使得数据项查询的时间复杂度达到O(1)

数据项过期时间

由于缓存空间是有限的,一旦缓存区没有足够的空间存储新的数据项时memcached会想办法淘汰一些数据项来腾出空间,淘汰机制基于LRULeast Recently Used)算法,将最近不常访问的数据项淘汰掉。

读操作缓存

写操作缓存

Web负载均衡

HTTP重定向来均衡负载

DNS负载均衡

IP负载均衡

 

 

posted @ 2011-05-05 21:24  Avril  阅读(3429)  评论(0编辑  收藏  举报