摘要:
yolov1 作者提出了一种新的目标检测方法 YOLO,之前的目标检测工作都是重新利用分类器来执行检测。作者的神经网络模型是端到端的检测,一次运行即可同时得到所有目标的边界框和类别概率。YOLO 架构的速度是非常快的,base 版本实时帧率为 45 帧,smaller 版本能达到每秒 155 帧,性能由于 DPM 和 R-CNN 等检测方法。 阅读全文
yolov1 作者提出了一种新的目标检测方法 YOLO,之前的目标检测工作都是重新利用分类器来执行检测。作者的神经网络模型是端到端的检测,一次运行即可同时得到所有目标的边界框和类别概率。YOLO 架构的速度是非常快的,base 版本实时帧率为 45 帧,smaller 版本能达到每秒 155 帧,性能由于 DPM 和 R-CNN 等检测方法。 阅读全文
posted @ 2022-12-27 14:36
嵌入式视觉
阅读(1056)
评论(0)
推荐(1)

浙公网安备 33010602011771号