思路:分析慢查询日志-查看表结构、表状态-查看表索引-分析sql语句-explain-修改sql语句-验证修改结果
打开慢查询日志
在my.cnf置文件中修改
log-slow-queries
打开慢查询日志
long_query_time
设一个阀值,要大于这个值才会记录,等于该值时不记录。
log_queries_not_using_indexes
如果运行的SQL语句没有使用索引,则MySQl数据库同样会将这条SQL语句记录到慢查询日志文件
也可以在MySQL中直接设置long_query_time的值
mysql> set long_query_time=2;
Query OK, 0 rows affected (0.02 sec)
mysql> show variables like 'long%';
+-----------------+-------+
| Variable_name   | Value |
+-----------------+-------+
| long_query_time | 2     |
+-----------------+-------+
1 row in set (0.00 sec)
查看慢查询日志
默认情况下,在数据库目录下,例如/var/lib/mysql,在数据库运行时,可动态观察
tail -f slowquery.log
……
# Time: 110523  9:58:35 时间
# User@Host: grid[grid] @  [203.100.192.66] 连接信息
# Query_time: 4  Lock_time: 0  Rows_sent: 1  Rows_examined: 4815
   查询时间        锁时间         返回行数        总共查询行数
select count(*) from table_name where ……
利用mysqldumpslow分析慢查询日志
mysqldumpslow -s c -t 10 输出记录次数最多的10条SQL语句
mysqldumpslow -s r -t 10 返回记录集最多的10个查询
mysqldumpslow -s t -t 10 -g 'left join' 按照时间排序的前10条里面含有左连接的查询语句
-s, 是表示按照何种方式排序
c 记录次数、t 时间、l 查询时间、r 返回的记录数,ac、at、al、ar,表示相应的倒叙;
-t, 是top n的意思,即为返回前面多少条的数据;
-g, 后边可以写一个正则匹配模式,大小写不敏感的;
 
| 
 -s t  | 
 按总query time排序  | 
 -s at  | 
 按平均query time排序  | 
| 
 -s l  | 
 按总locktime排序  | 
 -s al  | 
 按平均lock time排序  | 
| 
 -s s  | 
 按总row send排序  | 
 -s as  | 
 按平均row send排序  | 
| 
 -s c  | 
 按count排序  | 
 
  | 
 
  | 
注意:在默认情况下
mysqlslowdump的输出结果会使用N和S代替SQL中出现的数字和字符串
mysqlslowdump输出结果是按照count(SQL出现的次数)排序的
mysqldumpslow结果分析
# mysqldumpslow -s c -t 10 slowquery.log
 
Reading mysql slow query log from slowquery.log
Count: 147973  Time=4.64s (686449s)  Lock=0.34s (51032s)  Rows=1.0 (147687), grid[grid]@[203.100.192.66]
   select count(*) from table_name where ((newsT = 'S' and …………用S代表字符串
平均执行147973次,每次耗时4.64秒
分析问题
show create table table_name 查看表结构
分析问题 查看当期表都有哪些索引
mysql> show index from t \G
*************************** 1. row ***************************
        Table: t 索引所在的表名
    Non_unique: 0 非唯一索引,0代表唯一,可以看到主键名字是PRIMARY,因此必须唯一。
     Key_name: PRIMARY 索引的名称,可以通过这个名称来DROP INDEX
 Seq_in_index: 1 索引中该列的位置(注意理解是“索引中”),参考联合索引就容易理解了。
   Column_name: a 索引的列
    Collation: A 列以什么方式存储在索引中,可以是A或者NULL。B+树索引总是A,即排序的。如果使用了heap存储引擎,并建立了hash索引,这里就会显示NULL。因为hash根据hash桶来存放数据,而不是对数据进行排序。
   Cardinality: 5 非常关键的值!!!表示索引中唯一值的数据的估计值。Cardinality值/表的行数,应尽可能接近1,如果非常小,那么考虑是否还需要这个索引???
     Sub_part: NULL 是否是列的部分被索引,如果是整个列,则该字段为NULL
       Packed: NULL 关键字如何被压缩,如果没有被压缩,则为NULL
         Null: 是否索引的列含有NULL值。
    Index_type: BTREE 索引的类型。
       Comment: 注释
Index_comment:
 
Cardinality值(大概的值)非常关键,优化器会根据这个值来判断是否使用这个索引。但是这个值并不是实时更新的,并非每次索引的更新都会更新该值,因为代价太大。
更新索引的Cardinality信息
mysql> analyze table t \G
*************************** 1. row ***************************
   Table: test.t
      Op: analyze
Msg_type: status
Msg_text: OK
1 row in set (0.04 sec)
注意:不是每个系统上都得到同样的结果,目前(MySQL5.1),analyze table还存在一些问题。
建议:在非高峰时间,对应用程序下的几张核心表做analyze table操作,这能使优化器和索引更好的工作。
分析问题 explain
mysql> explain select * from t where a=1 \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t
         type: const
possible_keys: PRIMARY,idx_a_b
          key: PRIMARY 优化器实际使用的索引
      key_len: 4
          ref: const
         rows: 1
        Extra:
1 row in set (0.00 sec)
 
select_type:表示SELECT的类型,常见的取值有SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION中的第二个或者后面的查询语句)、SUBQUERY(子查询中的第一个SELECT)等。
table:输出结果集的表。
type:表示表的连接类型,性能由好到差的连接类型为
system(表中仅有一行,即常量表)、
const(单表中最多有一个匹配行,例如primary key或者unique index)、
eq_ref(对于前面的每一行,在此表中只查询一条记录,简单来说,就是多表连接中使用primary key或者unique index)、
ref(与eq_ref类似,区别在于不是使用primary key或者unique index,而是使用普通的索引)、
ref_or_null(与ref类似,区别在于条件中包含对NULL的查询)、
index_merge(索引合并优化)、
unique_subquery(in的后面是一个查询主键字段的子查询)、
index_subquery(与unique_subquery类似,区别在于in的后面是查询非唯一索引字段的子查询)、
range(单表中的范围查询)、
index(对于前面的每一行,都通过查询索引来得到数据)、
all(对于前面的每一行,都通过全表扫描来得到数据)。
possible_keys:表示查询时,可能使用的索引。
key:表示实际使用的索引。
key_len:索引字段的长度。
rows:扫描行的数量。
Extra:执行情况的说明和描述。
Distinct 
一旦MYSQL找到了与行相联合匹配的行,就不再搜索了 
Not exists 
MYSQL优化了LEFT JOIN,一旦它找到了匹配LEFT JOIN标准的行, 就不再搜索了 
Range checked for each 
Record(index map:#)