摘要: 决策树(DecisionTree, DT)是一种常见的用于分类和回归的非参数监督学习方法,目标是创建一个模型,通过从数 据特性中推导出简单的决策规则来预测目标变量的值。决策树模型的优点在于:1,简单容易理解,数据结构可以可视化表达。2,需要很少的数据准备,其他技术通常需 要数据标准化,需要创建虚拟变 阅读全文
posted @ 2019-04-09 16:44 Mission。 阅读(848) 评论(0) 推荐(0)
摘要: 决策树(DecisionTree, DT)是一种常见的用于分类和回归的非参数监督学习方法,目标是创建一个模型,通过从数 据特性中推导出简单的决策规则来预测目标变量的值。决策树模型的优点在于:1,简单容易理解,数据结构可以可视化表达。2,需要很少的数据准备,其他技术通常需 要数据标准化,需要创建虚拟变 阅读全文
posted @ 2019-04-09 16:43 Mission。 阅读(184) 评论(0) 推荐(0)