Select rows from Dataframe - 从Dataframe中选择行
How to select rows from a DataFrame based on column values ...
o select rows whose column value equals a scalar, some_value, use ==:
df.loc[df['column_name'] == some_value]
To select rows whose column value is in an iterable, some_values, use isin:
df.loc[df['column_name'].isin(some_values)]
Combine multiple conditions with &:
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
Note the parentheses. Due to Python's operator precedence rules, & binds more tightly than <= and >=. Thus, the parentheses in the last example are necessary. Without the parentheses
df['column_name'] >= A & df['column_name'] <= B
is parsed as
df['column_name'] >= (A & df['column_name']) <= B
which results in a Truth value of a Series is ambiguous error.
To select rows whose column value does not equal some_value, use !=:
df.loc[df['column_name'] != some_value]
isin returns a boolean Series, so to select rows whose value is not in some_values, negate the boolean Series using ~:
df.loc[~df['column_name'].isin(some_values)]
 
                    
                
                
            
        
浙公网安备 33010602011771号