Python Machine Learning-Chapter3
Chapter 3:A Tour of Machine Learning Classifiers Using Scikit-learn
3.1:Training a perceptron via scikit-learn
from sklearn import datasets import numpy as np iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target np.unique(y) from sklearn.cross_validation import train_test_split #从150个样本中随机抽取30%的样本作为test_data X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, random_state=0) #数据归一化 #StandardScaler estimated the parameters μ(sample mean) and (standard deviation) #(x - mean)/(standard deviation) from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) #Perceptron分类 #eta0 is equivalent to the learning rate from sklearn.linear_model import Perceptron ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0) ppn.fit(X_train_std, y_train) y_pred = ppn.predict(X_test_std) #y_test != y_pred ''' array([False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, True, False, False, False, False, False, False, False]) ''' print('Misclassified samples: %d' % (y_test != y_pred).sum()) #Misclassified samples: 4 #Thus, the misclassification error on the test dataset is 0.089 or 8.9 percent (4/45) #the metrics module:performance metrics from sklearn.metrics import accuracy_score print('Accuracy: %.2f' % accuracy_score(y_test, y_pred)) #Accuracy:0.91 #plot_decision_regions:visualize how well it separates the different flower samples from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02): #setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'black', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() -1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() -1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot all samples for idx, c1 in enumerate(np.unique(y)): print idx,c1 plt.scatter(x=X[y == c1, 0], y=X[y == c1, 1], alpha=0.8, c=cmap(idx),marker=markers[idx],label=c1) #highlight test samples if test_idx : X_test, y_test = X[test_idx, :], y[test_idx] #把 corlor 设置为空,通过edgecolors来控制颜色 plt.scatter(X_test[:, 0],X_test[:, 1], color='',edgecolors='black', alpha=1.0, linewidths=2, marker='o',s=150, label='test set') X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) plot_decision_regions(X=X_combined_std, y=y_combined, classifier=ppn, test_idx=range(105,150)) plt.xlabel('petal length [standardized]') plt.ylabel('petal width [standardized]') plt.legend(loc='upper left') plt.show()
3.2 Training a logistic regression model with scikit-learn
sigmoid function:
import matplotlib.pyplot as plt import numpy as np def sigmoid(z): return 1.0 / (1.0 + np.exp(-z)) z = np.arange(-7, 7, 0.1) phi_z = sigmoid(z) plt.plot(z, phi_z) plt.axvline(0.0, color='k') plt.axhspan(0.0, 1.0, facecolor='1.0', alpha=1.0, ls='dotted') plt.axhline(y=0.5, ls='dotted', color='k') plt.yticks([0.0, 0.5, 1.0]) plt.ylim(-0.1, 1.1) plt.xlabel('z') plt.ylabel('$\phi (z)$') plt.show()