【674】PyTorch —— 神经网络
一个典型的神经网络训练过程包括以下几点:
-
反向传播梯度到神经网络的参数
-
更新网络的参数
-
torch.nn 定义了相关神经网络层
-
torch.nn.functional 定义了相关函数
-
自定义的函数就是为了获取除batch size外的总元素个数
-
__init__(self) 函数:用来初始化层的结构
-
forward(self, x) 函数:通过函数将数据流建立起来
- net.parameters():一个模型可训练的参数
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
- 创建网络
input = torch.randn(1, 1, 32, 32) out = net(input) print(out) #把所有参数梯度缓存器置零,用随机的梯度来反向传播 net.zero_grad() out.backward(torch.randn(1, 10))
- 定义损失函数
output = net(input) target = torch.randn(10) # a dummy target, for example target = target.view(1, -1) # make it the same shape as output criterion = nn.MSELoss() loss = criterion(output, target) print(loss)
还有添加 optimizer 以及其他训练策略
浙公网安备 33010602011771号