【580】PyTorch 实现 CNN 例子(模型构建+训练方法)
参考:PyTorch 神经网络
参考:最浅显易懂的 PyTorch 深度学习入门 —— Bilibili
实现下面这个网络:

- 第一层:卷积 5*5*6、ReLU、Max Pooling
- 第二层:卷积 5*5*16、ReLU、Max Pooling
- 第三层:Flatten、Linear NN
- 第四层:Linear NN
- 第五层:Linear NN
这是一个简单的前馈神经网络,它接收输入,让输入一个接着一个的通过一些层,最后给出输出。
一个典型的神经网络训练过程包括以下几点:
- 定义一个包含可训练参数的神经网络
- 迭代整个输入
- 通过神经网络处理输入
- 计算损失(loss)
- 反向传播梯度到神经网络的参数
- 更新网络的参数,典型的用一个简单的更新方法:weight = weight - learning_rate *gradient
定义神经网络:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__( self ):
super (Net, self ).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution kernel
# 第一层
self .conv1 = nn.Conv2d(in_channels = 1 , out_channels = 6 , kernel_size = 5 )
# 第二层
self .conv2 = nn.Conv2d(in_channels = 6 , out_channels = 16 , kernel_size = 5 )
# an affine operation: y = Wx + b
# 第三层
self .fc1 = nn.Linear(in_features = 16 * 5 * 5 , out_features = 120 )
# 第四层
self .fc2 = nn.Linear(in_features = 120 , out_features = 84 )
# 第五层
self .fc3 = nn.Linear(in_features = 84 , out_features = 10 )
def forward( self , x):
# 第一层 (conv1 -> relu -> max pooling)
x = self .conv1(x)
x = F.relu(x)
# Max pooling over a (2, 2) window
x = F.max_pool2d(x, ( 2 , 2 ))
# 第二层 (conv2 -> relu -> max pooling)
x = self .conv2(x)
x = F.relu(x)
# If the size is a square you can only specify a single number
x = F.max_pool2d(x, 2 )
# 第三层 (fc -> relu)
x = x.view( - 1 , self .num_flat_features(x))
x = self .fc1(x)
x = F.relu(x)
# 第四层 (fc -> relu)
x = self .fc2(x)
x = F.relu(x)
# 第五层 (fc -> relu)
x = self .fc3(x)
x = F.relu(x)
return x
def num_flat_features( self , x):
size = x.size()[ 1 :] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features * = s
return num_features
net = Net()
print (net)
输出:
Net( (conv1): Conv2d( 1 , 6 , kernel_size = ( 5 , 5 ), stride = ( 1 , 1 )) (conv2): Conv2d( 6 , 16 , kernel_size = ( 5 , 5 ), stride = ( 1 , 1 )) (fc1): Linear(in_features = 400 , out_features = 120 , bias = True ) (fc2): Linear(in_features = 120 , out_features = 84 , bias = True ) (fc3): Linear(in_features = 84 , out_features = 10 , bias = True ) )
在Pytorch中训练模型包括以下几个步骤:
- 在每批训练开始时初始化梯度
- 前向传播
- 反向传播
- 计算损失并更新权重
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr = 0.001 , momentum = 0.9 )
for epoch in range ( 2 ): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate (trainloader, 0 ):
# get the inputs
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad() # Make sure gradient does not accumulate
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward() # Compute gradient
optimizer.step() # Update NN weights
# print statistics
running_loss + = loss.item()
if i % 2000 = = 1999 : # print every 2000 mini-batches
print ( '[%d, %5d] loss: %.3f' %
(epoch + 1 , i + 1 , running_loss / 2000 ))
running_loss = 0.0
print ( 'Finished Training' )
通用
# 在数据集上循环多次
for epoch in range ( 2 ):
for i, data in enumerate (trainloader, 0 ):
# 获取输入; data是列表[inputs, labels]
inputs, labels = data
# (1) 初始化梯度
optimizer.zero_grad() # Make sure gradient does not accumulate
# (2) 前向传播
outputs = net(inputs)
loss = criterion(outputs, labels)
# (3) 反向传播
loss.backward() # Compute gradient
# (4) 计算损失并更新权重
optimizer.step() # Update NN weights
结果可视化


浙公网安备 33010602011771号