Python学习笔记

Python学习手记


廖雪峰Python教程

Python高级特性

切片

L[0:3] = L[:3] ——取前三个元素

L[-1]——取倒数第一个元素 L[-2:-1]——倒数第二个到倒数第一个

L[:10:2]——前十个数每两个取一个

取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:

>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']

取前3个元素,应该怎么做?

笨办法:

>>> [L[0], L[1], L[2]]
['Michael', 'Sarah', 'Tracy']

之所以是笨办法是因为扩展一下,取前N个元素就没辙了。

取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:

>>> r = []
>>> n = 3
>>> for i in range(n):
...     r.append(L[i])
... 
>>> r
['Michael', 'Sarah', 'Tracy']

对经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。

对应上面的问题,取前3个元素,用一行代码就可以完成切片:

>>> L[0:3]
['Michael', 'Sarah', 'Tracy']

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引012,正好是3个元素。

如果第一个索引是0,还可以省略:

>>> L[:3]
['Michael', 'Sarah', 'Tracy']

也可以从索引1开始,取出2个元素出来:

>>> L[1:3]
['Sarah', 'Tracy']

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:

>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']

记住倒数第一个元素的索引是-1

切片操作十分有用。我们先创建一个0-99的数列:

>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后10个数:

>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]
[0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)

字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

函数式编程

函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

Python对函数式编程提供部分支持。由于Python允许使用变量,因此,Python不是纯函数式编程语言。

高阶函数

高阶函数特点:

  • 变量可以指向函数

    >>> f = abs
    >>> f
    <built-in function abs>
    >>> f(-10)
    10
    
  • 函数也是变量

    >>> abs = 10
    >>> abs(-10)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: 'int' object is not callable
    
  • 函数可以做参数

    >>> def add(x,y,f):
    ...     return f(x) + f(y)
    ...
    >>> print(add(-5,6,abs))
    11
    

map/reduce

  • map

    map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

    如:有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:

    >>> def f(x):
    ...     return x * x
    ...
    >>> r = map(f, [1,2,3,4,5,6,7,8,9])
    >>> list(r)
    [1, 4, 9, 16, 25, 36, 49, 64, 81]
    
    #任意复杂函数
    >>> list(map(str,[1,2,3]))
    ['1', '2', '3']
    
  • reduce

    reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

    reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
    

    序列求和:

    >>> from functools import reduce
    >>> def add(x,y):
    ...     return x + y
    ...
    >>> reduce(add,[1,3,5,7,9])
    

    str转换为int的函数:

    >>> from functools import reduce
    >>> def fn(x, y):
    ...     return x * 10 + y
    ...
    >>> def char2num(s):
    ...     digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
    ...     return digits[s]
    ...
    >>> reduce(fn, map(char2num, '13579'))
    13579
    

filter

map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

>>> def is_odd(n):
...     return n % 2 == 1
...
>>> list(filter(is_odd,[1,2,3,4,5,6]))
[1, 3, 5]

sorted

Python内置的sorted()函数就可以对list进行排序:

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]

此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]

key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:

list = [36, 5, -12, 9, -21]

keys = [36, 5,  12, 9,  21]

然后sorted()函数按照keys进行排序,并按照对应关系返回list相应的元素

要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True

匿名函数

关键字lambda表示匿名函数,冒号前面的x表示函数参数。

匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。

用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:

>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x101c6ef28>
>>> f(5)
25

偏函数

当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。

假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:

def int2(x, base=2):
    return int(x, base)

这样,我们转换二进制就非常方便了:

>>> int2('1000000')
64
>>> int2('1010101')
85

模块

安装第三方模块

清华镜像CMD模式下

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple 包名

面向对象编程

访问控制

要实现对象内的私有属性,可惜在属性双下划线__ 如__name。然后用set、get来代替

继承与多态

静态语言 vs 动态语言

对于静态语言(例如Java)来说,如果需要传入Animal类型,则传入的对象必须是Animal类型或者它的子类,否则,将无法调用run()方法。

对于Python这样的动态语言来说,则不一定需要传入Animal类型。我们只需要保证传入的对象有一个run()方法就可以了:

class Timer(object):
    def run(self):
        print('Start...')

这就是动态语言的“鸭子类型”,它并不要求严格的继承体系,一个对象只要“看起来像鸭子,走起路来像鸭子”,那它就可以被看做是鸭子。

Python的“file-like object“就是一种鸭子类型。对真正的文件对象,它有一个read()方法,返回其内容。但是,许多对象,只要有read()方法,都被视为“file-like object“。许多函数接收的参数就是“file-like object“,你不一定要传入真正的文件对象,完全可以传入任何实现了read()方法的对象。

面向对象高级编程

使用__slots__

如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加nameage属性。

为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:

class Student(object):
    __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称

然后,我们试试:

>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。

使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:

>>> class GraduateStudent(Student):
...     pass
...
>>> g = GraduateStudent()
>>> g.score = 9999

除非在子类中也定义__slots__,这样,子类实例允许定义的属性就是自身的__slots__加上父类的__slots__

使用@property

Python内置的@property装饰器就是负责把一个方法变成属性调用的:

class Student(object):

    @property
    def score(self):
        return self._score

    @score.setter
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性

多重继承

对于需要Runnable功能的动物,就多继承一个Runnable,例如Dog

class Dog(Mammal, Runnable):
    pass

对于需要Flyable功能的动物,就多继承一个Flyable,例如Bat

class Bat(Mammal, Flyable):
    pass

通过多重继承,一个子类就可以同时获得多个父类的所有功能。

MixIn

在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为MixIn。

为了更好地看出继承关系,我们把RunnableFlyable改为RunnableMixInFlyableMixIn。类似的,你还可以定义出肉食动物CarnivorousMixIn和植食动物HerbivoresMixIn,让某个动物同时拥有好几个MixIn:

class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
    pass

MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。

定制类

几个常见的定制方法:

  • __str__ 以及__repr__

    __str__ 用来使print变好看,__repr__用来使变量输出变好看

    >>> class Student(object):
    ...     def __init__(self, name):
    ...         self.name = name
    ...     def __str__(self):
    ...         return 'Student object (name: %s)' % self.name
    ...	    __repr__ = __str__
    >>> print(Student('Michael'))
    Student object (name: Michael)
    
  • __iter__

  • __getitem__

  • __getattr__

    注意,只有在没有找到属性的情况下,才调用__getattr__,已有的属性,比如name,不会在__getattr__中查找

    class Student(object):
    def __init__(self):
        self.name = 'Michael'
    
    def __getattr__(self, attr):
        if attr=='score':
            return 99
    
  • __call__

    一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。

    任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。请看示例:

    class Student(object):
        def __init__(self, name):
            self.name = name
    
        def __call__(self):
            print('My name is %s.' % self.name)
    

    调用方式如下:

    >>> s = Student('Michael')
    >>> s() # self参数不要传入
    My name is Michael.
    

评论区大佬示例 实现Chain().users('michael').repos输出/users/michael/repos

class Chain(object):
    def __init__(self, path=''):
       self.__path = path

    def __getattr__(self, path):
       return Chain('%s/%s' % (self.__path, path))

    def __call__(self, path):
       return Chain('%s/%s' % (self.__path, path))

    def __str__(self):
       return self.__path

    __repr__ = __str__

print(Chain().users('michael').repos) # /users/michael/repos

枚举类

from enum import Enum

Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))

这样我们就获得了Month类型的枚举类,可以直接使用Month.Jan来引用一个常量,或者枚举它的所有成员:

for name, member in Month.__members__.items():
    print(name, '=>', member, ',', member.value)

value属性则是自动赋给成员的int常量,默认从1开始计数。

如果需要更精确地控制枚举类型,可以从Enum派生出自定义类:

from enum import Enum, unique

@unique
class Weekday(Enum):
    Sun = 0 # Sun的value被设定为0
    Mon = 1
    Tue = 2
    Wed = 3
    Thu = 4
    Fri = 5
    Sat = 6

@unique装饰器可以帮助我们检查保证没有重复值。

访问这些枚举类型可以有若干种方法:

>>> day1 = Weekday.Mon
>>> print(day1)
Weekday.Mon
>>> print(Weekday.Tue)
Weekday.Tue
>>> print(Weekday['Tue'])
Weekday.Tue
>>> print(Weekday.Tue.value)
2
>>> print(day1 == Weekday.Mon)
True
>>> print(day1 == Weekday.Tue)
False
>>> print(Weekday(1))
Weekday.Mon
>>> print(day1 == Weekday(1))
True
>>> Weekday(7)
Traceback (most recent call last):
  ...
ValueError: 7 is not a valid Weekday
>>> for name, member in Weekday.__members__.items():
...     print(name, '=>', member)
...
Sun => Weekday.Sun
Mon => Weekday.Mon
Tue => Weekday.Tue
Wed => Weekday.Wed
Thu => Weekday.Thu
Fri => Weekday.Fri
Sat => Weekday.Sat

可见,既可以用成员名称引用枚举常量,又可以直接根据value的值获得枚举常量。

元类

  • type()

    >>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
    

错误、调试、测试

错误处理

try:
    print('try...')
    r = 10 / 0
    print('result:', r)
except ZeroDivisionError as e:
    print('except:', e)
finally:
    print('finally...')
print('END')

Python所有的错误都是从BaseException类派生的,常见的错误类型和继承关系看这里

IO编程

由于CPU和内存的速度远远高于外设的速度,所以,在IO编程中,就存在速度严重不匹配的问题。举个例子来说,比如要把100M的数据写入磁盘,CPU输出100M的数据只需要0.01秒,可是磁盘要接收这100M数据可能需要10秒,怎么办呢?有两种办法:

第一种是CPU等着,也就是程序暂停执行后续代码,等100M的数据在10秒后写入磁盘,再接着往下执行,这种模式称为同步IO

另一种方法是CPU不等待,只是告诉磁盘,“您老慢慢写,不着急,我接着干别的事去了”,于是,后续代码可以立刻接着执行,这种模式称为异步IO

"terminal.integrated.shell.windows": "C:\Windows\System32\cmd.exe",

"terminal.integrated.shellArgs.windows":[

​ "/K",

​ "F:\devp_tools\Anaconda3\Scripts\activate.bat F:\devp_tools\Anaconda3"

]

posted @ 2020-06-21 12:10  acui-fun  阅读(105)  评论(0)    收藏  举报