Java集合干货系列-(四)TreeMap源码解析
前言
今天来介绍下TreeMap,TreeMap是基于红黑树结构实现的一种Map,要分析TreeMap的实现首先就要对红黑树有所了解。
构造图如下:
蓝色线条:继承
绿色线条:接口实现
正文
TreeMap底层是基于红黑树(Red-Black tree)实现,所以在学习TreeMap之前我们先来了解下红黑树。
红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性。同时红黑树更是一颗自平衡的排序二叉树。
我们知道一颗基本的二叉树他们都需要满足一个基本性质–即树中的任何节点的值大于它的左子节点,且小于它的右子节点。按照这个基本性质使得树的检索效率大大提高。我们知道在生成二叉树的过程是非常容易失衡的,最坏的情况就是一边倒(只有右/左子树),这样势必会导致二叉树的检索效率大大降低(O(n)),所以为了维持二叉树的平衡,大牛们提出了各种实现的算法,如:AVL,SBT,伸展树,TREAP ,红黑树等等。
平衡二叉树必须具备如下特性:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。也就是说该二叉树的任何一个等等子节点,其左右子树的高度都相近。
红黑树顾名思义就是节点是红色或者黑色的平衡二叉树,它通过颜色的约束来维持着二叉树的平衡。对于一棵有效的红黑树二叉树而言我们必须增加如下规则:
- 每个节点都只能是红色或者黑色
- 根节点是黑色
- 每个叶节点(NIL节点,空节点)是黑色的。
- 如果一个结点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。
- 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
上面的规则前4条都好理解,第5条规则到底是什么情况,下面简单解释下,比如图中红8到1左边的叶子节点的路径包含两个黑色节点,到6下面的叶子节点的路径也包含两个黑色节点。
但是在在添加或删除节点后,红黑树就发生了变化,可能不再满足上面的5个特性,为了保持红黑树的以上特性,就有了三个动作:左旋、右旋、着色。
对y进行右旋,意味着”将y变成一个右节点”。
如果还是没看明白,下面找了两张左旋和右旋的动态图

ok,对二叉树、红黑树的概念有所了解后,我们来看下红黑树的两个主要逻辑添加和删除,看看TreeMap是怎么实现的。
TreeMap简介
TreeMap定义
1
|
public class TreeMap<K,V>
|
TreeMap 是一个有序的key-value集合,它是通过红黑树实现的。
TreeMap 继承于AbstractMap,所以它是一个Map,即一个key-value集合。
TreeMap 实现了NavigableMap接口,意味着它支持一系列的导航方法。比如返回有序的key集合。
TreeMap 实现了Cloneable接口,意味着它能被克隆。
TreeMap 实现了java.io.Serializable接口,意味着它支持序列化。
TreeMap基于红黑树(Red-Black tree)实现。该映射根据其键的自然顺序进行排序,或者根据创建映射时提供的 Comparator 进行排序,具体取决于使用的构造方法。
TreeMap的基本操作 containsKey、get、put 和 remove 的时间复杂度是 log(n) 。
另外,TreeMap是非同步的。 它的iterator 方法返回的迭代器是fail-fast的。
TreeMap属性
1
|
// 比较器
|
TreeMap的本质是R-B Tree(红黑树),它包含几个重要的成员变量: root, size, comparator。
- root 是红黑数的根节点。它是Entry类型,Entry是红黑数的节点,它包含了红黑数的6个基本组成成分:key(键)、value(值)、left(左孩子)、right(右孩子)、parent(父节点)、color(颜色)。Entry节点根据key进行排序,Entry节点包含的内容为value。
- 红黑数排序时,根据Entry中的key进行排序;Entry中的key比较大小是根据比较器comparator来进行判断的。
- size是红黑数中节点的个数。
Entry是树的节点类,我们来看一下Entry的定义:
1
|
static final class Entry<K,V> implements Map.Entry<K,V> {
|
Entry类理解起来比较简单(因为我们前面看过很多的Entry类了),主要是定义了树的孩子和父亲节点引用,和红黑颜色属性,并对equals和hashCode进行重写,以利于比较是否相等。
HashMap构造函数
1
|
/**
|
从构造方法中可以看出,要创建一个红黑树实现的TreeMap必须要有一个用于比较大小的比较器,因为只有能够比较大小才能实现红黑树的左孩子<树根<右孩子的特点。
API方法摘要
TreeMap源码解析(基于JDK1.6.0_45)
红黑树的添加原理及TreeMap的put实现
将一个节点添加到红黑树中,通常需要下面几个步骤:
- 将红黑树当成一颗二叉查找树,将节点插入.
这一步比较简单,就上开始我们自己写的二叉查找树的操作一样,至于为什么可以这样插入,是因为红黑树本身就是一个二叉查找树。 - 将新插入的节点设置为红色
有没有疑问,为什么新插入的节点一定要是红色的,因为新插入节点为红色,不会违背红黑规则第(5)条,少违背一条就少处理一种情况。 - 通过旋转和着色,使它恢复平衡,重新变成一颗符合规则的红黑树。
要想知道怎么样进行左旋和右旋,首先就要知道为什么要进行左旋和右旋。
我们来对比下红黑树的规则和新插入节点后的情况,看下新插入节点会违背哪些规则。
(1)节点是红色或黑色。
这一点肯定是不会违背的了。
(2)根节点是黑色。
这一点也不会违背了,如果是根节点,只需将根节点插入就好了,因为默认是黑色。
(3)每个叶节点(NIL节点,空节点)是黑色的。
这一点也不会违背的,我们插入的是非空的节点,不会影响空节点。
(4)每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
这一点是有可能违背的,我们将新插入的节点都设置成红色,如果其父节点也是红色的话,那就产生冲突了。
(5)从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
这一点也不会违背,因为我们将新插入的节点都设置成红色。
了解了红黑树左旋和右旋操作,以及新插入节点主要是可能会违背红黑树的规则(4)后,我们来分析下,添加新节点的过程有哪几种情况:
(1)新插入节点为根节点。这种情况直接将新插入节点设置为根节点即可,无需进行后续的旋转和着色处理。
(2)新插入节点的父节点是黑色。这种情况直接将新节点插入即可,不会违背规则(4)。
(3)新插入节点的父节点是红色。这种情况会违背规则(4),而这种情况又分为了以下几种,下面进行图解:
①新插入节点N的父节点P和叔叔节点U都是红色。方法是:将祖父节点G设置为红色,父节点P和叔叔节点U设置为黑色,这时候就看似平衡了。但是,如果祖父节点G的父节点也是红色,这时候又违背规则(4)了,怎么办,方法是:将GPUN这一组看成一个新的节点,按照前面的方案递归;又但是根节点为红就违反规则(2)了,怎么办,方法是直接将根节点设置为黑色(两个连续黑色是没问题的)。
②新插入节点N的父节点P是红色,叔叔节点U是黑色或者缺少,且新节点N是P的右孩子。方法是:左旋父节点P。左旋后N和P角色互换,但是P和N还是连续的两个红色节点,还没有平衡,怎么办,看第三种情况。
③新插入节点N的父节点P是红色,叔叔节点U是黑色或者缺少,且新节点N是P的左孩子。方法是:右旋祖父节点G,然后将P设置为黑色,G设置为红色,达到平衡。此时父节点P是黑色,所有不用担心P的父节点是红色。
当然上面说的三种情况都是基于一个前提:新插入节点N的父节点P是祖父节点G的左孩子,如果P是G的右孩子又是什么情况呢?其实情况和上面是相似的,只需要调整左旋还是右旋,这里就不细讲了。
上面分析了这么多,到底TreeMap是怎么实现的呢,我们来看下:
1
|
public V put(K key, V value) { |





