Java-Spark

wordcount代码:

package cn.itcast.hello;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;

import java.util.Arrays;
import java.util.List;

/**
 * Author itcast
 * Desc 演示使用Java语言开发SparkCore完成WordCount
 */
public class JavaSparkDemo01 {
    public static void main(String[] args) {
        //0.TODO 准备环境
        SparkConf sparkConf = new SparkConf().setAppName("JavaSparkDemo").setMaster("local[*]");
        JavaSparkContext jsc = new JavaSparkContext(sparkConf);
        jsc.setLogLevel("WARN");

        //1.TODO 加载数据
        JavaRDD<String> fileRDD = jsc.textFile("data/input/words.txt");

        //2.TODO 处理数据-WordCount
        //切割
        /*
        @FunctionalInterface
        public interface FlatMapFunction<T, R> extends Serializable {
          Iterator<R> call(T t) throws Exception;
        }
         */
        //注意:java的函数/lambda表达式的语法:
        // (参数列表)->{函数体}
        JavaRDD<String> wordsRDD = fileRDD.flatMap(line -> Arrays.asList(line.split(" ")).iterator());
        //每个单词记为1
        JavaPairRDD<String, Integer> wordAndOneRDD = wordsRDD.mapToPair(word -> new Tuple2<>(word, 1));
        //分组聚合
        JavaPairRDD<String, Integer> wordAndCountRDD = wordAndOneRDD.reduceByKey((a, b) -> a + b);

        //3.TODO 输出结果
        List<Tuple2<String, Integer>> result = wordAndCountRDD.collect();
        //result.forEach(t-> System.out.println(t));
        result.forEach(System.out::println);//方法引用/就是方法转为了函数

        //4.TODO 关闭资源
        jsc.stop();
    }
}

 

 

words.txt
hello me you her
hello you her
hello her
hello

 

SparkStreaming

package cn.itcast.hello;

import org.apache.spark.SparkConf;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;

import java.util.Arrays;

/**
 * Author itcast
 * Desc 演示使用Java语言开发SparkStreaming完成WordCount
 */
public class JavaSparkDemo02 {
    public static void main(String[] args) throws InterruptedException {
        //0.TODO 准备环境
        SparkConf sparkConf = new SparkConf().setAppName("JavaSparkDemo").setMaster("local[*]");
        //JavaSparkContext jsc = new JavaSparkContext(sparkConf);
        //jsc.setLogLevel("WARN");
        JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(5));
        jssc.sparkContext().setLogLevel("WARN");

        //1.TODO 加载数据
        JavaReceiverInputDStream<String> lines = jssc.socketTextStream("master", 9999);

        //2.TODO 处理数据-WordCount
        JavaPairDStream<String, Integer> result = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator())
                .mapToPair(word -> new Tuple2<>(word, 1))
                .reduceByKey((a, b) -> a + b);

        //3.TODO 输出结果
        result.print();

        //4.TODO 启动并等待停止
        jssc.start();
        jssc.awaitTermination();

        //4.TODO 关闭资源
        jssc.stop();
    }
}

 

 

SparkSQL

package cn.itcast.hello;

import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.SparkSession;

import java.util.Arrays;
import static org.apache.spark.sql.functions.col;

/**
 * Author itcast
 * Desc 演示使用Java语言开发SparkSQL完成WordCount
 */
public class JavaSparkDemo03 {
    public static void main(String[] args) {
        //0.TODO 准备环境
        SparkSession spark = SparkSession.builder().appName("JavaSparkDemo").master("local[*]").getOrCreate();
        spark.sparkContext().setLogLevel("WARN");


        //1.TODO 加载数据
        Dataset<String> ds = spark.read().textFile("data/input/words.txt");

        //2.TODO 处理数据-WordCount
        Dataset<String> wordsDS = ds.flatMap((String line) -> Arrays.asList(line.split(" ")).iterator(), Encoders.STRING());

        //TODO ====SQL
        wordsDS.createOrReplaceTempView("t_word");
        String sql = "select value, count(*) as counts " +
                "from t_word " +
                "group by value " +
                "order by counts desc";
        spark.sql(sql).show();

        //TODO ====DSL
        /*Dataset<Row> temp = wordsDS.groupBy("value")
                .count();
        temp.orderBy(temp.col("count").desc()).show();*/
        wordsDS.groupBy("value")
                .count()
                //.orderBy($"count".desc()).show();
                .orderBy(col("count").desc()).show();

        //3.TODO 输出结果


        //4.TODO 关闭资源
        spark.stop();

    }
}

 

 

StructuredStreaming

package cn.itcast.hello;

import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.streaming.OutputMode;
import org.apache.spark.sql.streaming.StreamingQueryException;

import java.util.Arrays;
import java.util.concurrent.TimeoutException;

import static org.apache.spark.sql.functions.col;
/**
 * Author itcast
 * Desc 演示使用Java语言开发StructuredStreaming完成WordCount
 */
public class JavaSparkDemo04 {
    public static void main(String[] args) throws TimeoutException, StreamingQueryException {
        //0.TODO 准备环境
        SparkSession spark = SparkSession.builder().appName("JavaSparkDemo").master("local[*]")
                .config("spark.sql.shuffle.partitions", "4")
                .getOrCreate();
        spark.sparkContext().setLogLevel("WARN");


        //1.TODO 加载数据
        Dataset<Row> lines = spark.readStream()
                .format("socket")
                .option("host", "master")
                .option("port", 9999)
                .load();

        //2.TODO 处理数据-WordCount
        Dataset<String> ds = lines.as(Encoders.STRING());
        Dataset<String> wordsDS = ds.flatMap((String line) -> Arrays.asList(line.split(" ")).iterator(), Encoders.STRING());

        //TODO ====SQL
        wordsDS.createOrReplaceTempView("t_word");
        String sql = "select value, count(*) as counts " +
                "from t_word " +
                "group by value " +
                "order by counts desc";
        Dataset<Row> result1 = spark.sql(sql);

        //TODO ====DSL
        Dataset<Row> result2 = wordsDS.groupBy("value")
                .count()
                .orderBy(col("count").desc());

        //3.TODO 输出结果
        result1.writeStream()
                .format("console")
                .outputMode(OutputMode.Complete())
                .start();
                /*.awaitTermination()*/
        result2.writeStream()
                .format("console")
                .outputMode(OutputMode.Complete())
                .start()
                .awaitTermination();

        //4.TODO 关闭资源
        spark.stop();

    }
}

 

线性回归算法-房价预测案例

需求

 

 

特征列:
|房屋编号mlsNum|城市city|平方英尺|卧室数bedrooms|卫生间数bathrooms|车库garage|年龄age|房屋占地面积acres|
标签列:
房屋价格price

 

步骤:

0.准备环境
1.加载数据
2.特征处理
3.数据集划分0.8训练集/0.2测试集
4.使用训练集训练线性回归模型
5.使用测试集对模型进行测试
6.计算误差rmse均方误差
7.模型保存(save)方便后续使用(load)
8.关闭资源

 

package cn.itcast.hello;

import org.apache.spark.ml.evaluation.RegressionEvaluator;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.ml.regression.LinearRegression;
import org.apache.spark.ml.regression.LinearRegressionModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.streaming.StreamingQueryException;

import java.io.IOException;
import java.util.concurrent.TimeoutException;

/**
 * Author itcast
 * Desc 演示使用Java语言开发SparkMlLib-线性回归算法-房价预测案例
 */
public class JavaSparkDemo05 {
    public static void main(String[] args) throws TimeoutException, StreamingQueryException, IOException {
        //0.TODO 准备环境
        SparkSession spark = SparkSession.builder().appName("JavaSparkDemo").master("local[*]")
                .config("spark.sql.shuffle.partitions", "4")
                .getOrCreate();
        spark.sparkContext().setLogLevel("WARN");

        //TODO 1.加载数据
        Dataset<Row> homeDataDF = spark.read()
                .format("csv")
                .option("sep", "|")//指定分隔符
                .option("header", "true")//是否有表头
                .option("inferSchema", "true")//是否自动推断约束
                .load("data/input/homeprice.data");
        homeDataDF.printSchema();
        homeDataDF.show();
        /*
        root
 |-- mlsNum: integer (nullable = true)
 |-- city: string (nullable = true)
 |-- sqFt: double (nullable = true)
 |-- bedrooms: integer (nullable = true)
 |-- bathrooms: integer (nullable = true)
 |-- garage: integer (nullable = true)
 |-- age: integer (nullable = true)
 |-- acres: double (nullable = true)
 |-- price: double (nullable = true)
//|房屋编号|城市|平方英尺|卧室数|卫生间数|车库|年龄|房屋占地面积|房屋价格
+-------+------------+-------+--------+---------+------+---+-----+---------+
| mlsNum|        city|   sqFt|bedrooms|bathrooms|garage|age|acres|    price|
+-------+------------+-------+--------+---------+------+---+-----+---------+
|4424109|Apple Valley| 1634.0|       2|        2|     2| 33| 0.04| 119900.0|
|4404211|   Rosemount|13837.0|       4|        6|     4| 17|14.46|3500000.0|
|4339082|  Burnsville| 9040.0|       4|        6|     8| 12| 0.74|2690000.0|
         */

        //TODO 2.特征处理
        //特征选择
        Dataset<Row> featuredDF = homeDataDF.select("sqFt", "age", "acres", "price");
        //特征向量化
        Dataset<Row> vectorDF = new VectorAssembler()
                .setInputCols(new String[]{"sqFt", "age", "acres"})//指定要对哪些特征做向量化
                .setOutputCol("features")//向量化之后的特征列列名
                .transform(featuredDF);
        vectorDF.printSchema();
        vectorDF.show();
        /*
        root
         |-- sqFt: double (nullable = true)
         |-- age: integer (nullable = true)
         |-- acres: double (nullable = true)
         |-- price: double (nullable = true)
         |-- features: vector (nullable = true)

        +-------+---+-----+---------+--------------------+
        |   sqFt|age|acres|    price|            features|
        +-------+---+-----+---------+--------------------+
        | 1634.0| 33| 0.04| 119900.0|  [1634.0,33.0,0.04]|
        |13837.0| 17|14.46|3500000.0|[13837.0,17.0,14.46]|
        | 9040.0| 12| 0.74|2690000.0|  [9040.0,12.0,0.74]|
         */


        //TODO 3.数据集划分0.8训练集/0.2测试集
        Dataset<Row>[] arr = vectorDF.randomSplit(new double[]{0.8, 0.2}, 100);
        Dataset<Row> trainSet = arr[0];
        Dataset<Row> testSet = arr[1];

        //TODO 4.构建线性回归模型并使用训练集训练
        LinearRegressionModel model = new LinearRegression()
                .setFeaturesCol("features")//设置特征列(应该设置向量化之后的)
                .setLabelCol("price")//设置标签列(数据中已经标记好的原本的价格)
                .setPredictionCol("predict_price")//设置预测列(后续做预测时预测的价格)
                .setMaxIter(10)//最大迭代次数
                .fit(trainSet);//使用训练集进行训练

        //TODO 5.使用测试集对模型进行测试/预测
        Dataset<Row> testResult = model.transform(testSet);
        testResult.show(false);

        //TODO 6.计算误差rmse均方误差
        double rmse = new RegressionEvaluator()//创建误差评估器
                .setMetricName("rmse") //设置要计算的误差名称,均方根误差 (sum((y-y')^2)/n)^0.5
                .setLabelCol("price")//设置真实值是哪一列
                .setPredictionCol("predict_price")//设置预测值是哪一列
                .evaluate(testResult);//对数据中的真实值和预测值进行误差计算
        System.out.println("rmse为:" + rmse);

        //TODO 7.模型保存(save)方便后续使用(load)
        //model.save("path");
        //LinearRegressionModel lmodel = LinearRegressionModel.load("path");

        //TODO 8.关闭资源
        spark.stop();
    }
}

结果:

root
 |-- mlsNum: integer (nullable = true)
 |-- city: string (nullable = true)
 |-- sqFt: double (nullable = true)
 |-- bedrooms: integer (nullable = true)
 |-- bathrooms: integer (nullable = true)
 |-- garage: integer (nullable = true)
 |-- age: integer (nullable = true)
 |-- acres: double (nullable = true)
 |-- price: double (nullable = true)

+-------+------------+-------+--------+---------+------+---+-----+---------+
| mlsNum|        city|   sqFt|bedrooms|bathrooms|garage|age|acres|    price|
+-------+------------+-------+--------+---------+------+---+-----+---------+
|4424109|Apple Valley| 1634.0|       2|        2|     2| 33| 0.04| 119900.0|
|4404211|   Rosemount|13837.0|       4|        6|     4| 17|14.46|3500000.0|
|4339082|  Burnsville| 9040.0|       4|        6|     8| 12| 0.74|2690000.0|
|4362154|   Lakeville| 6114.0|       7|        5|    12| 25|14.83|1649000.0|
|4388419|   Lakeville| 6546.0|       5|        5|    11| 38| 5.28|1575000.0|
|4188305|   Rosemount| 1246.0|       4|        1|     2|143|56.28|1295000.0|
|4350149|       Eagan| 8699.0|       5|        6|     7| 28| 2.62|1195000.0|
|4409729|   Rosemount| 6190.0|       7|        7|     7| 22|4.128|1195000.0|
|4408821|   Lakeville| 5032.0|       5|        5|     3|  9|  1.1|1125000.0|
|4342395|   Lakeville| 4412.0|       4|        5|     4|  9|0.924|1100000.0|
|4361031|   Lakeville| 5451.0|       5|        5|     2| 22|23.83| 975000.0|
|4424555|Apple Valley| 8539.0|       5|        6|     6| 20|2.399| 975000.0|
|4416412|   Rosemount| 4910.0|       5|        4|     3| 29| 7.99| 799000.0|
|4420237|Apple Valley| 5000.0|       4|        4|     3| 14| 0.77| 796000.0|
|4392412|       Eagan| 7000.0|       4|        5|     3| 21| 1.65| 789900.0|
|4432729|   Rosemount| 6300.0|       5|        5|     3| 22|4.724| 789000.0|
|4349895|   Lakeville| 5001.0|       4|        4|     6| 13| 2.62| 778500.0|
|4376726|  Burnsville| 5138.0|       4|        5|     3| 24| 1.83| 749900.0|
|4429738|   Lakeville| 4379.0|       4|        4|     8|  6|  0.7| 749900.0|
|4429711|   Lakeville| 4944.0|       4|        5|     3|  9|0.724| 724900.0|
+-------+------------+-------+--------+---------+------+---+-----+---------+
only showing top 20 rows

root
 |-- sqFt: double (nullable = true)
 |-- age: integer (nullable = true)
 |-- acres: double (nullable = true)
 |-- price: double (nullable = true)
 |-- features: vector (nullable = true)

+-------+---+-----+---------+--------------------+
|   sqFt|age|acres|    price|            features|
+-------+---+-----+---------+--------------------+
| 1634.0| 33| 0.04| 119900.0|  [1634.0,33.0,0.04]|
|13837.0| 17|14.46|3500000.0|[13837.0,17.0,14.46]|
| 9040.0| 12| 0.74|2690000.0|  [9040.0,12.0,0.74]|
| 6114.0| 25|14.83|1649000.0| [6114.0,25.0,14.83]|
| 6546.0| 38| 5.28|1575000.0|  [6546.0,38.0,5.28]|
| 1246.0|143|56.28|1295000.0|[1246.0,143.0,56.28]|
| 8699.0| 28| 2.62|1195000.0|  [8699.0,28.0,2.62]|
| 6190.0| 22|4.128|1195000.0| [6190.0,22.0,4.128]|
| 5032.0|  9|  1.1|1125000.0|    [5032.0,9.0,1.1]|
| 4412.0|  9|0.924|1100000.0|  [4412.0,9.0,0.924]|
| 5451.0| 22|23.83| 975000.0| [5451.0,22.0,23.83]|
| 8539.0| 20|2.399| 975000.0| [8539.0,20.0,2.399]|
| 4910.0| 29| 7.99| 799000.0|  [4910.0,29.0,7.99]|
| 5000.0| 14| 0.77| 796000.0|  [5000.0,14.0,0.77]|
| 7000.0| 21| 1.65| 789900.0|  [7000.0,21.0,1.65]|
| 6300.0| 22|4.724| 789000.0| [6300.0,22.0,4.724]|
| 5001.0| 13| 2.62| 778500.0|  [5001.0,13.0,2.62]|
| 5138.0| 24| 1.83| 749900.0|  [5138.0,24.0,1.83]|
| 4379.0|  6|  0.7| 749900.0|    [4379.0,6.0,0.7]|
| 4944.0|  9|0.724| 724900.0|  [4944.0,9.0,0.724]|
+-------+---+-----+---------+--------------------+
only showing top 20 rows

21/03/22 17:07:18 WARN Instrumentation: [56c49327] regParam is zero, which might cause numerical instability and overfitting.
21/03/22 17:07:18 WARN BLAS: Failed to load implementation from: com.github.fommil.netlib.NativeSystemBLAS
21/03/22 17:07:18 WARN BLAS: Failed to load implementation from: com.github.fommil.netlib.NativeRefBLAS
21/03/22 17:07:18 WARN LAPACK: Failed to load implementation from: com.github.fommil.netlib.NativeSystemLAPACK
21/03/22 17:07:18 WARN LAPACK: Failed to load implementation from: com.github.fommil.netlib.NativeRefLAPACK
+------+---+-----+--------+-------------------+-------------------+
|sqFt  |age|acres|price   |features           |predict_price      |
+------+---+-----+--------+-------------------+-------------------+
|851.0 |8  |0.01 |90000.0 |[851.0,8.0,0.01]   |66591.15920164142  |
|921.0 |43 |0.35 |138500.0|[921.0,43.0,0.35]  |33052.91814224735  |
|950.0 |73 |0.249|137500.0|[950.0,73.0,0.249] |-10072.945366103137|
|1012.0|33 |0.01 |69900.0 |[1012.0,33.0,0.01] |52882.097934101475 |
|1048.0|30 |0.01 |104900.0|[1048.0,30.0,0.01] |62662.67324717087  |
|1057.0|32 |0.01 |102900.0|[1057.0,32.0,0.01] |60995.34651481066  |
|1089.0|32 |0.01 |127500.0|[1089.0,32.0,0.01] |65701.34099693046  |
|1091.0|98 |0.12 |73000.0 |[1091.0,98.0,0.12] |-29951.262079218992|
|1104.0|41 |0.04 |84900.0 |[1104.0,41.0,0.04] |55198.981091219306 |
|1107.0|11 |0.01 |133900.0|[1107.0,11.0,0.01] |99752.7835379153   |
|1125.0|46 |0.302|154900.0|[1125.0,46.0,0.302]|57366.181856518015 |
|1128.0|32 |0.051|129900.0|[1128.0,32.0,0.051]|72462.72808724108  |
|1175.0|17 |0.01 |117000.0|[1175.0,17.0,0.01] |100780.35877105064 |
|1200.0|36 |0.01 |60000.0 |[1200.0,36.0,0.01] |76043.48399587075  |
|1202.0|39 |0.01 |125000.0|[1202.0,39.0,0.01] |71851.27713031859  |
|1237.0|18 |0.01 |134900.0|[1237.0,18.0,0.01] |108402.77923992957 |
|1274.0|13 |0.01 |120000.0|[1274.0,13.0,0.01] |121321.30456102165 |
|1300.0|0  |0.01 |248900.0|[1300.0,0.0,0.01]  |144585.69500071075 |
|1312.0|16 |0.01 |90000.0 |[1312.0,16.0,0.01] |122423.34148785431 |
|1360.0|30 |0.104|99900.0 |[1360.0,30.0,0.104]|110898.31197543285 |
+------+---+-----+--------+-------------------+-------------------+
only showing top 20 rows

rmse为:65078.804057320325

 

posted @ 2021-03-21 21:51  ziyuliu  阅读(293)  评论(0)    收藏  举报