P5769 [JSOI2016]飞机调度

P5769 [JSOI2016]飞机调度

题目描述:

Link

题目分析:

上一次见最小链覆盖还是在上次

这个题的建模也是比较的神奇。(就我想怎么把点连起来是吧

如果说当前的飞机在飞完 \(i\) 条航线之后,可以接着飞 \(j\) 条航线,那么我们就从 \(i\)\(j\) 连一条有向边。

这样的话我们就可以得到一个 DAG,而我们的目标就是用尽可能少的飞机飞完所有的航线。

就是一个 DAG 上的最小路径覆盖的模型。

具体来说,就是把一个点拆成两个点,如果原图中存在 \(x \to y\) 的边,那么就从 \(x_1 \to y_2\)

那么最小路径覆盖 = n - 二分图最大匹配数。(是时候把网络流 24 题过一遍了

那么剩下的问题就是如何判断飞完 \(i\) 条航线,能不能飞 \(j\) 条线的问题。

先 Floyd 预处理距离。那么就很好判断了。

Code:

//editor : DRYAYST
//Wo shi ge da SHA BI
#include<bits/stdc++.h>
#define g() getchar()
#define il inline
#define ull unsigned long long
#define eps 1e-10
#define ll long long
#define pa pair<int, int>
#define for_1(i, n) for(int i = 1; i <= (n); ++i)
#define for_0(i, n) for(int i = 0; i < (n); ++i)
#define for_xy(i, x, y) for(int i = (x); i <= (y); ++i)
#define for_yx(i, y, x) for(int i = (y); i >= (x); --i)
#define for_edge(i, x) for(int i = head[x]; i; i = nxt[i])
#define int long long
#define DB double
#define ls (p<<1)
#define rs (p<<1|1)
#define m_p make_pair
#define fi first
#define se second
using namespace std;
const int N = 1e6 + 10, INF = 0x7f7f7f7f, mod = 1e9 + 7;
il int qpow(int x, int k) {int ans = 1; while(k) {if(k & 1) ans = ans * x % mod; x = x * x % mod; k >>= 1; } return ans; }
il int Add(int x, int y) {return (x += y) %= mod;}
il int Del(int x, int y) {return (x = x - y + mod) % mod;}
il int Mul(int x, int y) {return x * y % mod;}
il int inv(int x) {return qpow(x, mod - 2); }
inline int re() {
    int x = 0, p = 1;
    char ch = getchar();
    while(ch > '9' || ch < '0') {if(ch == '-') p = -1; ch = getchar();}
    while(ch <= '9' and ch >= '0') {x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar();}
    return x * p;
}

int head[N], ver[N], edge[N], tot = 1, nxt[N];
il void add(int x, int y, int z) {ver[++tot] = y; nxt[tot] = head[x]; head[x] = tot; edge[tot] = z;}
il void addedge(int x, int y, int z) {add(x, y, z); add(y, x, 0); }
int n, m, s, t; 
int dep[N], now[N], a[N], dis[600][600], T[600][600]; 
struct Node{int x, y, d; } que[N]; 
queue<int> q; 

bool bfs() {
	while(q.size()) q.pop(); memset(dep, 0, sizeof(dep)); 
	q.push(s); now[s] = head[s]; dep[s] = 1; 
	while(q.size()) {
		int x = q.front(); q.pop(); 
		for_edge(i, x) {
			int y = ver[i], z = edge[i]; 
			if(!dep[y] and z) { now[y] = head[y]; dep[y] = dep[x] + 1;  q.push(y); if(y == t) return 1; }
		}
	}
	return 0; 
} 
int dinic(int x, int flow) {
	if(x == t) return flow;  int res = flow, k; 
	for(int i = now[x]; i and res; i = nxt[i]){
		int y = ver[i], z = edge[i]; 
		if(dep[y] == dep[x] + 1 and z) {
			k = dinic(y, min(res, z)); if(!k) dep[y] = 0; 
			edge[i] -= k;  edge[i ^ 1] += k;  res -= k; 
		}
		now[x] = i; 
	}
	return flow - res; 
}

signed main() {
     freopen("summer.in","r",stdin); freopen("summer.out","w",stdout); 
    n = re(), m = re(); for_1(i, n) a[i] = re(); s = 2 * m + 1, t = s + 1; 
    for_1(i, n) for_1(j, n) {T[i][j] = re(); if(i != j) dis[i][j] = T[i][j] + a[j];}
    for_1(k, n) for_1(i, n) for_1(j, n) dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]); 
    for_1(i, m) {que[i].x = re(), que[i].y = re(), que[i].d = re(); addedge(s, i, 1); addedge(i+m, t, 1); }
    for_1(i, m) for_1(j, m) {if(que[i].d + T[que[i].x][que[i].y] + a[que[i].y] + dis[que[i].y][que[j].x] <= que[j].d) addedge(i, j + m, 1); }
    int flow = 0, maxflow = 0; 
    while(bfs()) while(flow = dinic(s, INF)) maxflow += flow; 
    cout<<m - maxflow<<endl; 

}
posted @ 2022-04-05 14:38  Zwaire  阅读(88)  评论(0)    收藏  举报