Codeforces Round #277.5 (Div. 2)C. Given Length and Sum of Digits...(贪心)
Description
You have a positive integer m and a non-negative integer s. Your task is to find the smallest and the largest of the numbers that have length m and sum of digits s. The required numbers should be non-negative integers written in the decimal base without leading zeroes.
Input
The single line of the input contains a pair of integers m, s (1 ≤ m ≤ 100, 0 ≤ s ≤ 900) — the length and the sum of the digits of the required numbers.
Output
In the output print the pair of the required non-negative integer numbers — first the minimum possible number, then — the maximum possible number. If no numbers satisfying conditions required exist, print the pair of numbers "-1 -1" (without the quotes).
Sample Input
2 15
0 0
Sample Output
69 96
-1 -1
思路
题意:
求由1-9组成的长度为m且各位数之和为s的最大数和最小数。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 105;
int a[maxn];
bool OK(int m, int s)
{
return s >= 0 && s <= m * 9;
}
int main()
{
int m, s;
scanf("%d%d", &m, &s);
if (!OK(m, s) || (m > 1 && s == 0)) printf("-1 -1\n");
else
{
int cnt = 0, sum = s;
for (int i = 0; i < m; i++)
{
for (int j = 0; j < 10; j++)
{
if (((i > 0 || j > 0) || (m == 1 && j == 0)) && OK(m - i - 1, sum - j))
{
sum -= j;
a[cnt++] = j;
break;
}
}
}
for (int i = 0; i < cnt; i++) printf("%d", a[i]);
printf(" ");
cnt = 0, sum = s;
for (int i = 0; i < m; i++)
{
for (int j = 9; j >= 0; j--)
{
if (((i > 0 || j > 0) || (m == 1 && j == 0)) && OK(m - i - 1, sum - j))
{
sum -= j;
a[cnt++] = j;
break;
}
}
}
for (int i = 0; i < cnt; i++) printf("%d", a[i]);
puts("\40");
}
return 0;
}
┆ 凉 ┆ 暖 ┆ 降 ┆ 等 ┆ 幸 ┆ 我 ┆ 我 ┆ 里 ┆ 将 ┆ ┆ 可 ┆ 有 ┆ 谦 ┆ 戮 ┆ 那 ┆ ┆ 大 ┆ ┆ 始 ┆ 然 ┆
┆ 薄 ┆ 一 ┆ 临 ┆ 你 ┆ 的 ┆ 还 ┆ 没 ┆ ┆ 来 ┆ ┆ 是 ┆ 来 ┆ 逊 ┆ 没 ┆ 些 ┆ ┆ 雁 ┆ ┆ 终 ┆ 而 ┆
┆ ┆ 暖 ┆ ┆ 如 ┆ 地 ┆ 站 ┆ 有 ┆ ┆ 也 ┆ ┆ 我 ┆ ┆ 的 ┆ 有 ┆ 精 ┆ ┆ 也 ┆ ┆ 没 ┆ 你 ┆
┆ ┆ 这 ┆ ┆ 试 ┆ 方 ┆ 在 ┆ 逃 ┆ ┆ 会 ┆ ┆ 在 ┆ ┆ 清 ┆ 来 ┆ 准 ┆ ┆ 没 ┆ ┆ 有 ┆ 没 ┆
┆ ┆ 生 ┆ ┆ 探 ┆ ┆ 最 ┆ 避 ┆ ┆ 在 ┆ ┆ 这 ┆ ┆ 晨 ┆ ┆ 的 ┆ ┆ 有 ┆ ┆ 来 ┆ 有 ┆
┆ ┆ 之 ┆ ┆ 般 ┆ ┆ 不 ┆ ┆ ┆ 这 ┆ ┆ 里 ┆ ┆ 没 ┆ ┆ 杀 ┆ ┆ 来 ┆ ┆ ┆ 来 ┆

浙公网安备 33010602011771号