[COCI2020-2021#4] Vepar 题解
思路
由于输入比较大,直接乘肯定会炸掉,所以我们把每个数拆分成质因数相乘的形式,然后指数相加减,但是还是会炸
有一个定理:\(n!\) 中质因子\(p\) 有:
\(⌊\frac{n}{p}⌋+⌊\frac{n}{p ^ 2}⌋+⌊\frac{n}{p ^ 3}⌋⋅⋅⋅⋅⋅⋅\) 个(简要证明: \(p\) 的倍数, \(p\) 平方的倍数……)
Code:
// 写了普通拆分依然TLE :( 所以只能动用数学的力量了
#include <bits/stdc++.h>
using namespace std;
namespace IO
{
inline long long read()
{
long long res = 0;
bool f = 0;
char ch = getchar();
while (ch < '0' || ch > '9')
f |= (ch == '-'), ch = getchar();
while (ch >= '0' && ch <= '9')
res = (res << 3) + (res << 1) + ch - '0', ch = getchar();
return f ? -res : res;
}
}
using IO::read;
const int MAXN = 1e7 + 5;
bitset<MAXN> not_prime;
vector<int> prime;
int low[MAXN];
int val[MAXN];
void init()
{
for (int i = 2; i < MAXN; ++i)
{
if (!not_prime[i])
prime.push_back(i), low[i] = i;
for (auto pri : prime)
{
if (pri * i >= MAXN)
break;
not_prime[i * pri] = 1;
low[i * pri] = pri;
if (i % pri == 0)
break;
}
}
}
int num[MAXN];
int T, n, a, b, c, d;
int part(int num, int pri)
{
int cnt = 0;
while (num)
{
cnt += num / pri; // 能被pri次幂整除的个数
num /= pri;
}
return cnt;
}
void solve()
{
a = read(), b = read(), c = read(), d = read();
memset(val, 0, sizeof(val));
// int maxx = max({a, b, c, d}); 其实跟取b同效
for (auto pri : prime)
{
if (pri > b)
break;
int a_jian_b = part(b, pri) - part(a - 1, pri);
int c_jian_d = part(d, pri) - part(c - 1, pri);
if (a_jian_b > c_jian_d)
return cout << "NE\n", void();
}
return cout << "DA\n", void();
}
int main()
{
init();
T = read();
while (T--)
solve();
return 0;
}

浙公网安备 33010602011771号