782E. Underground Lab DFS 好题
题意:给出一个图,有n个点,m条边,k个人,每个人至多只能走$\lceil\frac{2n}{k}\rceil$步,输出可行的方案即输出每个人所走的步数和所走点
思路: 由于保证给出的是连通图,且每人$\lceil\frac{2n}{k}\rceil$的步数都用完的话,显然必定有答案。那么我们不妨构造一个DFS的遍历序列(包括回溯的过程),那么最后对这个序列进行分配即可,如果图已经走完,而还有人没走,那么直接输出 1 1 即可
/** @Date : 2017-05-10 18:06:33
* @FileName: 782E DFS.cpp
* @Platform: Windows
* @Author : Lweleth (SoundEarlf@gmail.com)
* @Link : https://github.com/Lweleth
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
int n, m, k;
vector vt[2*N];
int a[2*N];
int ans[2*N];
bool vis[N];
int cnt = 0;
void dfs(int x)
{
vis[x] = 1;
a[cnt++] = x;
int l = vt[x].size();
for(int i = 0; i < l; i++)
{
int np = vt[x][i];
if(vis[np])
continue;
dfs(np);
a[cnt++] = x;//模拟回溯
}
}
int main()
{
while(cin >> n >> m >> k)
{
for(int i = 0; i < m; i++)
{
int x, y;
scanf("%d%d", &x, &y);
vt[x].PB(y);
vt[y].PB(x);
}
int ma = 2*n/k + ((2*n)%k?1:0);
MMF(vis);
cnt = 0;
dfs(1);
int cc = 0;
for(int i = 0; i < cnt; i++)
{
//cout << a[i]<<"~";
if(cc < ma)
ans[cc++] = a[i];
else
{
k--;
printf("%d ", ma);
for(int j = 0; j < cc; j++)
printf("%d%s", ans[j], j==cc-1?"\n":" ");
cc = 0;
ans[cc++] = a[i];
}
}
if(cc > 0)
printf("%d ", cc), k--;
for(int i = 0; i < cc; i++)
printf("%d%s", ans[i], i==cc-1?"\n":" ");
for(int i = 0; i < k; i++)
printf("1 1\n");
}
return 0;
}

浙公网安备 33010602011771号