实现二叉排序树的前中后序遍历

二叉排序树定义

二叉排序树(Binary Sort Tree),也称为二叉查找树(Binary Search Tree, BST)或有序二叉树,是一种特殊的二叉树数据结构。以下是二叉排序树的一些核心概念:

一个二叉排序树或者是一棵空树,或者是具有以下性质的二叉树:

  • 右子树上所有结点的值均大于它的根结点的值
  • 左子树上所有结点的值均小于它的根结点的值
  • 左右子树也分别为二叉排序树
  • 不存在键值相等的节点

代码实现

#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>

typedef int DataType_t; 
typedef struct BSTreeNode
{
	DataType_t 			Keyval; 
	struct BSTreeNode *lchild;
	struct BSTreeNode *rchild;

}BSTNode_t;


 BSTNode_t* BSTree_Create(DataType_t KeyVal)
{
	BSTNode_t *root = (BSTNode_t *)calloc(1,sizeof(BSTNode_t));
	if(root == NULL){
		perror("Calloc memory for the root is failed!\n");
		exit(-1);
	}
	root->lchild = NULL;
	root->rchild = NULL;
	root->Keyval = KeyVal;
	return root;
}


BSTNode_t* BSTree_NewNode(DataType_t KeyVal)
{
	BSTNode_t *New = (BSTNode_t *)calloc(1,sizeof(BSTNode_t));
	if(New == NULL){
		perror("Calloc memory for the New is failed!\n");
		return NULL;
	}
	New->lchild = NULL;
	New->rchild = NULL;
	New->Keyval   = KeyVal;
	return New;
}


bool BSTree_InsertNode(BSTNode_t* root, DataType_t KeyVal)
{
    if (root == NULL) {
        printf("Error: root is NULL, cannot insert %d\n", KeyVal);
        return false;
    }

    BSTNode_t *New = BSTree_NewNode(KeyVal);
    if (New == NULL) {
        printf("Create NewNode Error\n");
        return false;
    }

    BSTNode_t *Proot = root;
    while (Proot != NULL) {
        if (KeyVal == Proot->Keyval) {
            printf("Can not Insert, duplicate value: %d\n", KeyVal);
            free(New); // 避免内存泄漏
            return false;
        }
        else if (KeyVal < Proot->Keyval) {
            if (Proot->lchild == NULL) {
                Proot->lchild = New;
                return true;
            }
            Proot = Proot->lchild;
        }
        else {
            if (Proot->rchild == NULL) {
                Proot->rchild = New;
                return true;
            }
            Proot = Proot->rchild; // 
        }
    }

    return true; //
}

//前序遍历
bool BSTree_PreOrder(BSTNode_t* root)
{
	if(root == NULL)
	{
		return false;
	}

	printf("KeyVal = %d\n",root->Keyval);
	BSTree_PreOrder(root->lchild);
	BSTree_PreOrder(root->rchild);

	return true;
}
//中序遍历
bool BSTree_InOrder(BSTNode_t* root)
{
	if(root == NULL)
	{
		return false;
	}
	BSTree_InOrder(root->lchild);
	printf("KeyVal = %d\n",root->Keyval);
	BSTree_InOrder(root->rchild);
	return true;
}
//后序遍历
bool BSTree_PostOrder(BSTNode_t* root)
{
	if(root == NULL)
	{
		return false;
	}
	BSTree_PostOrder(root->lchild);
	BSTree_PostOrder(root->rchild);
	printf("KeyVal = %d\n",root->Keyval);
	return true;
}

int main()
{
    // --- 1. 测试:创建根节点 ---
    printf("1. 创建根节点...\n");
    BSTNode_t* root = BSTree_Create(50);
    if (root) {
        printf("成功创建根节点,值为: %d\n", root->Keyval);
    }

    // --- 2. 测试:插入多个节点 ---
    printf("\n2. 插入其他节点...\n");
    int values[] = {30, 70, 20, 40, 60, 80, 35, 45};
    int n = sizeof(values) / sizeof(values[0]);

    for (int i = 0; i < n; i++) {
        if (BSTree_InsertNode(root, values[i])) {
            printf("成功插入: %d\n", values[i]);
        }
    }
    // --- 3. 测试:重复插入(应失败)---
    printf("\n3. 测试重复插入...\n");
    BSTree_InsertNode(root, 40);  // 已存在
    BSTree_InsertNode(root, 50);  // 根节点已存在

    // --- 4. 测试:遍历操作 ---
    printf("\n4. 遍历测试...\n");

    printf("\n=== 前序遍历 (Pre-order) ===\n");
    BSTree_PreOrder(root);

    printf("\n=== 中序遍历 (In-order) - 应升序输出 ===\n");
    BSTree_InOrder(root);

    printf("\n=== 后序遍历 (Post-order) ===\n");
    BSTree_PostOrder(root);

 	printf("\n7. 测试插入到 NULL 树(应失败)...\n");
    BSTNode_t* emptyTree = NULL;
    bool result = BSTree_InsertNode(emptyTree, 100);
    if (!result) {
        printf("正确:无法向 NULL 树插入节点。\n");
    }
    printf("\n所有测试完成\n");
    return 0;
}

根节点的值是50,主函数中依次插入节点:30, 70, 20, 40, 60, 80, 35, 45,所以这棵树的图像长这个样子
msedge_FFfY1DDJMl

运行结果

vmware_T22DOzRczs

vmware_kjOd3npI9Z

posted @ 2025-08-04 21:08  Yue+  阅读(39)  评论(0)    收藏  举报