bzoj 4407 于神之怒加强版

Description

给下N,M,K.求

Input

输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示。

Output

如题

Sample Input

1 2
3 3

Sample Output

20

HINT

1<=N,M,K<=5000000,1<=T<=2000

 

$\sum_{d=1}^nd^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$

$\sum_{d=1}^nd^k\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)==1]$

$\sum_{d=1}^nd^k\sum_{i=1}^{n/d}\mu(i)[\frac{n/d}{i}][\frac{m/d}{i}]$

$\sum_{d=1}^nd^k\sum_{i=1}^{n/d}\mu(i)[\frac{n}{id}][\frac{m}{id}]$

令$T=id$

$\sum_{d=1}^nd^k\sum_{i=1}^{n/d}\mu(i)[\frac{n}{T}][\frac{m}{T}]$

$f(T)=\sum_{d|T}d^k\mu(\frac{T}{d})$

这是一个狄利克雷卷积,一定是积性函数

所以可以用线性筛法求出,不必要用枚举倍数的nlogn的方FA

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 using namespace std;
 7 typedef long long lol;
 8 const int N=5000000;
 9 int Mod=1e9+7;
10 int sum[N+5],s[N+5],prime[N+5],tot,k,n,m,ans;
11 bool vis[N+5];
12 int qpow(int x,int y)
13 {
14   int res=1;
15   while (y)
16     {
17       if (y&1) res=1ll*res*x%Mod;
18       x=1ll*x*x%Mod;
19       y>>=1;
20     }
21   return res;
22 }
23 void pre()
24 {int i,j;
25   sum[1]=1;
26   for (i=2;i<=N;i++)
27     {
28       if (vis[i]==0)
29     {
30       prime[++tot]=i;
31       s[tot]=qpow(i,k);
32       sum[i]=s[tot]-1;
33     }
34       for (j=1;j<=tot;j++)
35     {
36       if (1ll*i*prime[j]>N) break;
37       vis[i*prime[j]]=1;
38       if (i%prime[j]==0)
39         {
40           sum[i*prime[j]]=1ll*sum[i]*s[j]%Mod;
41           break;
42         }
43       else sum[i*prime[j]]=1ll*sum[i]*sum[prime[j]]%Mod;
44     }
45     }
46   for (i=1;i<=N;i++)
47     sum[i]=(sum[i]+sum[i-1])%Mod;
48 }
49 int main()
50 {int T,i,pos;
51   cin>>T>>k;
52   pre();
53   while (T--)
54     {
55       scanf("%d%d",&n,&m);
56       if (n>m) swap(n,m);
57       ans=0;
58       for (i=1;i<=n;i=pos+1)
59     {
60       pos=min(n/(n/i),m/(m/i));
61       ans+=1ll*(sum[pos]-sum[i-1]+Mod)%Mod*(n/i)%Mod*(m/i)%Mod;
62       ans%=Mod;
63     }
64       printf("%d\n",ans);
65     }
66 }

 

posted @ 2018-01-25 11:21  Z-Y-Y-S  阅读(218)  评论(0编辑  收藏  举报