#include "rsa.hpp"
class prime_factory
{
unsigned np;
unsigned *pl;
public:
prime_factory();
~prime_factory();
vlong find_prime( vlong & start );
};
// prime factory implementation
static int is_probable_prime( const vlong &p )
{
// Test based on Fermats theorem a**(p-1) = 1 mod p for prime p
// For 1000 bit numbers this can take quite a while
const rep = 4;
const unsigned any[rep] = { 2,3,5,7 };
for ( unsigned i=0; i<rep; i+=1 )
if ( modexp( any[i], p-1, p ) != 1 )
return 0;
return 1;
}
prime_factory::prime_factory()
{
np = 0;
unsigned NP = 200;
pl = new unsigned[NP];
// Initialise pl
unsigned SS = 8*NP; // Rough estimate to fill pl
char * b = new char[SS+1]; // one extra to stop search
for (unsigned i=0;i<=SS;i+=1) b[i] = 1;
unsigned p = 2;
while (1)
{
// skip composites
while ( b[p] == 0 ) p += 1;
if ( p == SS ) break;
pl[np] = p;
np += 1;
if ( np == NP ) break;
// cross off multiples
unsigned c = p*2;
while ( c < SS )
{
b[c] = 0;
c += p;
}
p += 1;
}
delete [] b;
}
prime_factory::~prime_factory()
{
delete [] pl;
}
vlong prime_factory::find_prime( vlong & start )
{
unsigned SS = 1000; // should be enough unless we are unlucky
char * b = new char[SS]; // bitset of candidate primes
unsigned tested = 0;
while (1)
{
unsigned i;
for (i=0;i<SS;i+=1)
b[i] = 1;
for (i=0;i<np;i+=1)
{
unsigned p = pl[i];
unsigned r = start % p; // not as fast as it should be - could do with special routine
if (r) r = p - r;
// cross off multiples of p
while ( r < SS )
{
b[r] = 0;
r += p;
}
}
// now test candidates
for (i=0;i<SS;i+=1)
{
if ( b[i] )
{
tested += 1;
if ( is_probable_prime(start) )
return start;
}
start += 1;
}
}
delete [] b;
}
static vlong from_str( const char * s )
{
vlong x = 0;
while (*s)
{
x = x * 256 + (unsigned char)*s;
s += 1;
}
return x;
}
void private_key::create( const char * r1, const char * r2 )
{
// Choose primes
{
prime_factory pf;
p = pf.find_prime( from_str(r1) );
q = pf.find_prime( from_str(r2) );
if ( p > q ) { vlong tmp = p; p = q; q = tmp; }
}
// Calculate public key
{
m = p*q;
e = 50001; // must be odd since p-1 and q-1 are even
while ( gcd(p-1,e) != 1 ¦ ¦ gcd(q-1,e) != 1 ) e += 2;
}
}
vlong public_key::encrypt( const vlong& plain )
{
return modexp( plain, e, m );
}
vlong private_key::decrypt( const vlong& cipher )
{
// Calculate values for performing decryption
// These could be cached, but the calculation is quite fast
vlong d = modinv( e, (p-1)*(q-1) );
vlong u = modinv( p, q );
vlong dp = d % (p-1);
vlong dq = d % (q-1);
// Apply chinese remainder theorem
vlong a = modexp( cipher % p, dp, p );
vlong b = modexp( cipher % q, dq, q );
if ( b < a ) b += q;
return a + p * ( ((b-a)*u) % q );
}
class prime_factory
{
unsigned np;
unsigned *pl;
public:
prime_factory();
~prime_factory();
vlong find_prime( vlong & start );
};
// prime factory implementation
static int is_probable_prime( const vlong &p )
{
// Test based on Fermats theorem a**(p-1) = 1 mod p for prime p
// For 1000 bit numbers this can take quite a while
const rep = 4;
const unsigned any[rep] = { 2,3,5,7 };
for ( unsigned i=0; i<rep; i+=1 )
if ( modexp( any[i], p-1, p ) != 1 )
return 0;
return 1;
}
prime_factory::prime_factory()
{
np = 0;
unsigned NP = 200;
pl = new unsigned[NP];
// Initialise pl
unsigned SS = 8*NP; // Rough estimate to fill pl
char * b = new char[SS+1]; // one extra to stop search
for (unsigned i=0;i<=SS;i+=1) b[i] = 1;
unsigned p = 2;
while (1)
{
// skip composites
while ( b[p] == 0 ) p += 1;
if ( p == SS ) break;
pl[np] = p;
np += 1;
if ( np == NP ) break;
// cross off multiples
unsigned c = p*2;
while ( c < SS )
{
b[c] = 0;
c += p;
}
p += 1;
}
delete [] b;
}
prime_factory::~prime_factory()
{
delete [] pl;
}
vlong prime_factory::find_prime( vlong & start )
{
unsigned SS = 1000; // should be enough unless we are unlucky
char * b = new char[SS]; // bitset of candidate primes
unsigned tested = 0;
while (1)
{
unsigned i;
for (i=0;i<SS;i+=1)
b[i] = 1;
for (i=0;i<np;i+=1)
{
unsigned p = pl[i];
unsigned r = start % p; // not as fast as it should be - could do with special routine
if (r) r = p - r;
// cross off multiples of p
while ( r < SS )
{
b[r] = 0;
r += p;
}
}
// now test candidates
for (i=0;i<SS;i+=1)
{
if ( b[i] )
{
tested += 1;
if ( is_probable_prime(start) )
return start;
}
start += 1;
}
}
delete [] b;
}
static vlong from_str( const char * s )
{
vlong x = 0;
while (*s)
{
x = x * 256 + (unsigned char)*s;
s += 1;
}
return x;
}
void private_key::create( const char * r1, const char * r2 )
{
// Choose primes
{
prime_factory pf;
p = pf.find_prime( from_str(r1) );
q = pf.find_prime( from_str(r2) );
if ( p > q ) { vlong tmp = p; p = q; q = tmp; }
}
// Calculate public key
{
m = p*q;
e = 50001; // must be odd since p-1 and q-1 are even
while ( gcd(p-1,e) != 1 ¦ ¦ gcd(q-1,e) != 1 ) e += 2;
}
}
vlong public_key::encrypt( const vlong& plain )
{
return modexp( plain, e, m );
}
vlong private_key::decrypt( const vlong& cipher )
{
// Calculate values for performing decryption
// These could be cached, but the calculation is quite fast
vlong d = modinv( e, (p-1)*(q-1) );
vlong u = modinv( p, q );
vlong dp = d % (p-1);
vlong dq = d % (q-1);
// Apply chinese remainder theorem
vlong a = modexp( cipher % p, dp, p );
vlong b = modexp( cipher % q, dq, q );
if ( b < a ) b += q;
return a + p * ( ((b-a)*u) % q );
}
浙公网安备 33010602011771号