洛谷-2044

洛谷-2044

思路

首先对与递推式\(x_n = (a * x_{n - 1} + c)\) % \(mod\),发现\(c\)的存在使得不能直接使用整数快速幂求出\(x_n\),因为\(x_n\)是关于\(a, c, x0\)\(n\)次多项式。并且\(n\)\(1e18\)大小的。

于是考虑使用矩阵快速幂加速,但是显然不能使用一维矩阵(没意义),考虑通过二维矩阵
\(\begin{pmatrix} x_n & c \end{pmatrix}\)
来得到关系式。(\(x_{n-1}\)\(c\)均与\(x_n\)有关)

首先有

\[\begin{pmatrix} x_n & c \end{pmatrix} = \begin{pmatrix} x_{n - 1} & c \end{pmatrix} * \begin{pmatrix} A & B \\ C & D \end{pmatrix} \tag{1} \]

\((1)\)展开,有

\[\begin{cases} x_n = x_{n - 1} * A + c * C \\ c = x_{n - 1} * B + c * D \end{cases} \tag{2} \]

由于\(x_n = a * x_{n - 1} + c\),替换\((2)\)中第一个方程的\(x_n\),得到

\[\begin{cases} a * x_{n - 1} + c = x_{n - 1} * A + c * C \\ c = x_{n - 1} * B + c * D \end{cases} \tag{3} \]

\((3)\)得到

\[\begin{pmatrix} A = a & B = 0 \\ C = 1 & D = 1 \end{pmatrix} \]

再由于

\[\begin{pmatrix} x_n & c \end{pmatrix} = \begin{pmatrix} x_{n - 1} & c \end{pmatrix} * \begin{pmatrix} a & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} x_{0} & c \end{pmatrix} * \begin{pmatrix} a & 0 \\ 1 & 1 \end{pmatrix} ^{n} \]

可知,只需要求出
\( \begin{pmatrix} a & 0 \\ 1 & 1 \end{pmatrix} ^{n} \)
即可得到答案。

Code

#include <bits/stdc++.h>
using namespace std;
#define _u_u_ ios::sync_with_stdio(false), cin.tie(nullptr)
#define cf int _o_o_;cin>>_o_o_;for (int Case = 1; Case <= _o_o_;Case++)
#define SZ(x) (int)(x.size())
inline void _A_A_();
signed main() {_A_A_();return 0;}

using ll = long long;
#define int long long
int mod = 1e9 + 7;
const int maxn = 2e5 + 10;
const int N = 2, M = 5010;
const int inf = 0x3f3f3f3f;

struct mat {
    int m[N][N];
};

ll n, c, x0,  g;

int mul(int a,int b) {
    int res = 0;
    a %= mod;
    b %= mod;
    while(b) {
        if (b & 1) {
            res = (res + a) % mod;
        }
        a = (a + a) % mod;
        b >>= 1;
    }
    return res;
}

mat operator * (const mat&a, const mat&b) {
    mat c;
    memset(c.m, 0, sizeof c.m);
    for (int i = 0;i < N;i++) {
        for (int j = 0;j < N;j++) {
            for (int k = 0;k < N;k++) {
                c.m[i][j] = (c.m[i][j] + mul(a.m[i][k] , b.m[k][j])) % mod;
            }
        }
    }
    return c;
}

mat qpow(mat a, int b ) {
    mat c;
    memset(c.m, 0,sizeof c.m);
    for (int i = 0;i < N;i++) c.m[i][i] = 1;
    while (b) {
        if (b & 1) {
            c = c * a;
        }
        a = a * a;
        b >>= 1;
    }
    return c;
}

inline void _A_A_() {
    #ifdef LOCAL
    freopen("in.in", "r", stdin);
    #endif
    _u_u_;
    mat s;
    memset(s.m, 0, sizeof s.m);
    s.m[1][0] = s.m[1][1] = 1;
    cin >> mod >> s.m[0][0] >> c >> x0 >> n >> g;
    s = qpow(s, n);
    int xn = (mul(s.m[0][0] , x0) + mul(c , s.m[1][0])) % mod;// 注意xn可能会大于mod,要取模。
    cout << (xn) % g << "\n";
}
posted @ 2022-11-14 14:26  Uzhia  阅读(56)  评论(0)    收藏  举报