洛谷-1306
洛谷-1306
思路
引理1:(\(f_n\)是斐波那契数列)
\[\gcd(f_n,f_{n + 1}) = 1
\]
引理2:(设\(m > n\))
\[\gcd(f_n, f_m) = \gcd(f_{n}, f_{m - n} * f_{n + 1})
\]
结论:
\[\gcd(f_n,f_m) = f_{\gcd(n, m)}
\]
证明:这个
注意:
斐波那契数列是\(f_1 = 1, f_2 = 1, f_3 = 2\)
而不是\(f_0 = 1, f_1 = 1, f_2 = 2\)
Code
#include <bits/stdc++.h>
using namespace std;
#define _u_u_ ios::sync_with_stdio(false), cin.tie(nullptr)
#define cf int _o_o_;cin>>_o_o_;for (int Case = 1; Case <= _o_o_;Case++)
#define SZ(x) (int)(x.size())
inline void _A_A_();
signed main() {_A_A_();return 0;}
using ll = long long;
#define int ll
int mod = 1e8;
const int maxn = 2e5 + 10;
const int N = 2, M = 5010;
const int inf = 0x3f3f3f3f;
struct mat
{
int m[N][N];
};
mat operator * (const mat&a, const mat&b) {
mat c;
memset(c.m, 0, sizeof c.m);
for (int i = 0;i < N;i++) {
for (int j = 0;j < N;j++) {
for (int k = 0;k < N;k++) {
c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
}
}
}
return c;
}
mat qpow(mat a, int n) {
mat c;
memset(c.m, 0, sizeof c.m);
for (int i = 0;i < N;i++) c.m[i][i] = 1;
while (n ) {
if (n & 1) {
c = c * a;
}
a = a * a;
n >>= 1;
}
return c;
}
inline void _A_A_() {
#ifdef LOCAL
freopen("in.in", "r", stdin);
#endif
int n, m;
cin >> n >> m;
mat s;
memset(s.m,0,sizeof s.m);
s.m[0][0] = s.m[0][1] = s.m[1][0] = 1;
s = qpow(s, __gcd(n,m) - 1);
n = (s.m[0][1] + s.m[1][1]) % mod;
cout << n << "\n";
}

浙公网安备 33010602011771号