Trigonometric functions
Trigonometric functions
标签(空格分隔): 三角函数
Unit right-angle triangle

\(\sin\theta=\frac{opposite \quad side}{hypotenuse}\)
\(\cos\theta=\frac{adjacent \quad side}{hypotenuse}\)
\(\tan\theta=\frac{opposite}{adjacent}\)
We can only define how many each trigonometric functions are with \(0\leq\theta\leq180^{\cdot}\).
Unit circleUnit right-angle triangle[1]

convert degree to radian
Instead, it measures the length of the arc corresponding to the \(\theta\), and the radian \(\theta\) can work!
$180^{\circ}=2\pi $
1 radian = \(\frac{180^{\circ}}{2\pi}\)
we can analogize triangle to circle where \(\theta\) can up to \(360^{\circ}\) or even \(n\times 360^{\circ}\).
\(\sin\theta=\frac{opposite \quad side}{hypotenuse}=y\)
\(\cos\theta=\frac{adjacent \quad side}{hypotenuse}=x\)
\(\tan\theta=\frac{opposite}{adjacent}=\frac{y}{x}\) [2]
3. The properties of the trigonometric functions
3.1 signs of trigonometric functions

3.2 periodic functions
$f(x)=A\sin(\omega x+\psi) \quad \quad T=\frac{2\pi}{\omega} $
|functions|period|
|sin|\(2\pi\)|
|cos|\(2\pi\)|
|tan|\(\pi\)|
3.3 parity
$\sin $: odd function
$\cos $: even function
$\tan $: odd function
3.4 amplitude
sin && cos ->1
tan -> \(\infty\)

浙公网安备 33010602011771号